Update src/distilabel_dataset_generator/sft.py
Browse files
src/distilabel_dataset_generator/sft.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import multiprocessing
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
@@ -179,7 +180,8 @@ def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, token: str =
|
|
179 |
result_queue.put(distiset)
|
180 |
|
181 |
|
182 |
-
def generate_system_prompt(dataset_description, token: OAuthToken = None):
|
|
|
183 |
generate_description = TextGeneration(
|
184 |
llm=InferenceEndpointsLLM(
|
185 |
model_id=MODEL,
|
@@ -192,8 +194,10 @@ def generate_system_prompt(dataset_description, token: OAuthToken = None):
|
|
192 |
),
|
193 |
use_system_prompt=True,
|
194 |
)
|
|
|
195 |
generate_description.load()
|
196 |
-
|
|
|
197 |
generate_description.process(
|
198 |
[
|
199 |
{
|
@@ -203,6 +207,15 @@ def generate_system_prompt(dataset_description, token: OAuthToken = None):
|
|
203 |
]
|
204 |
)
|
205 |
)[0]["generation"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
|
208 |
def generate_dataset(
|
@@ -213,6 +226,7 @@ def generate_dataset(
|
|
213 |
orgs_selector=None,
|
214 |
dataset_name=None,
|
215 |
token: OAuthToken = None,
|
|
|
216 |
):
|
217 |
if dataset_name is not None:
|
218 |
if not dataset_name:
|
@@ -242,7 +256,7 @@ def generate_dataset(
|
|
242 |
duration = 1000
|
243 |
|
244 |
gr.Info(
|
245 |
-
"
|
246 |
duration=duration,
|
247 |
)
|
248 |
result_queue = multiprocessing.Queue()
|
@@ -250,15 +264,24 @@ def generate_dataset(
|
|
250 |
target=_run_pipeline,
|
251 |
args=(result_queue, num_turns, num_rows, system_prompt),
|
252 |
)
|
|
|
253 |
try:
|
254 |
p.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
p.join()
|
256 |
except Exception as e:
|
257 |
raise gr.Error(f"An error occurred during dataset generation: {str(e)}")
|
|
|
|
|
258 |
distiset = result_queue.get()
|
259 |
|
260 |
if dataset_name is not None:
|
261 |
-
|
262 |
repo_id = f"{orgs_selector}/{dataset_name}"
|
263 |
distiset.push_to_hub(
|
264 |
repo_id=repo_id,
|
@@ -269,31 +292,30 @@ def generate_dataset(
|
|
269 |
gr.Info(
|
270 |
f'Dataset pushed to Hugging Face Hub: <a href="https://huggingface.co/datasets/{repo_id}">https://huggingface.co/datasets/{repo_id}</a>'
|
271 |
)
|
|
|
|
|
|
|
|
|
|
|
272 |
else:
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
outputs["content"].append(message["content"])
|
285 |
-
return pd.DataFrame(outputs)
|
286 |
|
287 |
|
288 |
with gr.Blocks(
|
289 |
title="⚗️ Distilabel Dataset Generator",
|
290 |
head="⚗️ Distilabel Dataset Generator",
|
291 |
) as app:
|
292 |
-
gr.Markdown(
|
293 |
-
"""
|
294 |
-
|
295 |
-
"""
|
296 |
-
)
|
297 |
dataset_description = gr.TextArea(
|
298 |
label="Provide a description of the dataset",
|
299 |
value=DEFAULT_SYSTEM_PROMPT_DESCRIPTION,
|
@@ -316,25 +338,38 @@ with gr.Blocks(
|
|
316 |
value="Regenerate sample dataset",
|
317 |
)
|
318 |
gr.Column(scale=1)
|
319 |
-
|
320 |
-
table = gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
btn_generate_system_prompt.click(
|
323 |
fn=generate_system_prompt,
|
324 |
inputs=[dataset_description],
|
325 |
outputs=[system_prompt],
|
|
|
326 |
).then(
|
327 |
-
fn=
|
328 |
inputs=[system_prompt],
|
329 |
outputs=[table],
|
|
|
330 |
)
|
331 |
|
332 |
btn_generate_sample_dataset.click(
|
333 |
-
fn=
|
334 |
inputs=[system_prompt],
|
335 |
outputs=[table],
|
|
|
336 |
)
|
337 |
|
|
|
|
|
|
|
|
|
338 |
btn_login: gr.LoginButton | None = get_login_button()
|
339 |
with gr.Column() as push_to_hub_ui:
|
340 |
with gr.Row(variant="panel"):
|
@@ -371,7 +406,9 @@ with gr.Blocks(
|
|
371 |
orgs_selector,
|
372 |
dataset_name_push_to_hub,
|
373 |
],
|
|
|
|
|
374 |
)
|
375 |
|
376 |
app.load(get_org_dropdown, outputs=[orgs_selector])
|
377 |
-
app.load(fn=swap_visibilty, outputs=push_to_hub_ui)
|
|
|
1 |
import multiprocessing
|
2 |
+
import time
|
3 |
|
4 |
import gradio as gr
|
5 |
import pandas as pd
|
|
|
180 |
result_queue.put(distiset)
|
181 |
|
182 |
|
183 |
+
def generate_system_prompt(dataset_description, token: OAuthToken = None, progress=gr.Progress()):
|
184 |
+
progress(0.1, desc="Initializing text generation")
|
185 |
generate_description = TextGeneration(
|
186 |
llm=InferenceEndpointsLLM(
|
187 |
model_id=MODEL,
|
|
|
194 |
),
|
195 |
use_system_prompt=True,
|
196 |
)
|
197 |
+
progress(0.4, desc="Loading model")
|
198 |
generate_description.load()
|
199 |
+
progress(0.7, desc="Generating system prompt")
|
200 |
+
result = next(
|
201 |
generate_description.process(
|
202 |
[
|
203 |
{
|
|
|
207 |
]
|
208 |
)
|
209 |
)[0]["generation"]
|
210 |
+
progress(1.0, desc="System prompt generated")
|
211 |
+
return result
|
212 |
+
|
213 |
+
|
214 |
+
def generate_sample_dataset(system_prompt, progress=gr.Progress()):
|
215 |
+
progress(0.1, desc="Initializing sample dataset generation")
|
216 |
+
result = generate_dataset(system_prompt, num_turns=1, num_rows=2, progress=progress)
|
217 |
+
progress(1.0, desc="Sample dataset generated")
|
218 |
+
return result
|
219 |
|
220 |
|
221 |
def generate_dataset(
|
|
|
226 |
orgs_selector=None,
|
227 |
dataset_name=None,
|
228 |
token: OAuthToken = None,
|
229 |
+
progress=gr.Progress(),
|
230 |
):
|
231 |
if dataset_name is not None:
|
232 |
if not dataset_name:
|
|
|
256 |
duration = 1000
|
257 |
|
258 |
gr.Info(
|
259 |
+
"Dataset generation started. This might take a while. Don't close the page.",
|
260 |
duration=duration,
|
261 |
)
|
262 |
result_queue = multiprocessing.Queue()
|
|
|
264 |
target=_run_pipeline,
|
265 |
args=(result_queue, num_turns, num_rows, system_prompt),
|
266 |
)
|
267 |
+
|
268 |
try:
|
269 |
p.start()
|
270 |
+
total_steps = 100
|
271 |
+
for step in range(total_steps):
|
272 |
+
if not p.is_alive():
|
273 |
+
break
|
274 |
+
progress((step + 1) / total_steps, desc=f"Generating dataset with {num_rows} rows")
|
275 |
+
time.sleep(0.5) # Adjust this value based on your needs
|
276 |
p.join()
|
277 |
except Exception as e:
|
278 |
raise gr.Error(f"An error occurred during dataset generation: {str(e)}")
|
279 |
+
|
280 |
+
|
281 |
distiset = result_queue.get()
|
282 |
|
283 |
if dataset_name is not None:
|
284 |
+
progress(0.95, desc="Pushing dataset to Hugging Face Hub.")
|
285 |
repo_id = f"{orgs_selector}/{dataset_name}"
|
286 |
distiset.push_to_hub(
|
287 |
repo_id=repo_id,
|
|
|
292 |
gr.Info(
|
293 |
f'Dataset pushed to Hugging Face Hub: <a href="https://huggingface.co/datasets/{repo_id}">https://huggingface.co/datasets/{repo_id}</a>'
|
294 |
)
|
295 |
+
|
296 |
+
# If not pushing to hub generate the dataset directly
|
297 |
+
distiset = distiset["default"]["train"]
|
298 |
+
if num_turns == 1:
|
299 |
+
outputs = distiset.to_pandas()[["prompt", "completion"]]
|
300 |
else:
|
301 |
+
outputs = distiset.to_pandas()[["messages"]]
|
302 |
+
# outputs = {"conversation_id": [], "role": [], "content": []}
|
303 |
+
# conversations = distiset["messages"]
|
304 |
+
# for idx, entry in enumerate(conversations):
|
305 |
+
# for message in entry["messages"]:
|
306 |
+
# outputs["conversation_id"].append(idx + 1)
|
307 |
+
# outputs["role"].append(message["role"])
|
308 |
+
# outputs["content"].append(message["content"])
|
309 |
+
|
310 |
+
progress(1.0, desc="Dataset generation completed")
|
311 |
+
return pd.DataFrame(outputs)
|
|
|
|
|
312 |
|
313 |
|
314 |
with gr.Blocks(
|
315 |
title="⚗️ Distilabel Dataset Generator",
|
316 |
head="⚗️ Distilabel Dataset Generator",
|
317 |
) as app:
|
318 |
+
gr.Markdown("## Iterate on a sample dataset")
|
|
|
|
|
|
|
|
|
319 |
dataset_description = gr.TextArea(
|
320 |
label="Provide a description of the dataset",
|
321 |
value=DEFAULT_SYSTEM_PROMPT_DESCRIPTION,
|
|
|
338 |
value="Regenerate sample dataset",
|
339 |
)
|
340 |
gr.Column(scale=1)
|
341 |
+
|
342 |
+
#table = gr.HTML(_format_dataframe_as_html(DEFAULT_DATASET))
|
343 |
+
table = gr.DataFrame(
|
344 |
+
value=DEFAULT_DATASET,
|
345 |
+
interactive=False,
|
346 |
+
wrap=True,
|
347 |
+
|
348 |
+
)
|
349 |
|
350 |
btn_generate_system_prompt.click(
|
351 |
fn=generate_system_prompt,
|
352 |
inputs=[dataset_description],
|
353 |
outputs=[system_prompt],
|
354 |
+
show_progress=True,
|
355 |
).then(
|
356 |
+
fn=generate_sample_dataset,
|
357 |
inputs=[system_prompt],
|
358 |
outputs=[table],
|
359 |
+
show_progress=True,
|
360 |
)
|
361 |
|
362 |
btn_generate_sample_dataset.click(
|
363 |
+
fn=generate_sample_dataset,
|
364 |
inputs=[system_prompt],
|
365 |
outputs=[table],
|
366 |
+
show_progress=True,
|
367 |
)
|
368 |
|
369 |
+
# Add a header for the full dataset generation section
|
370 |
+
gr.Markdown("## Generate full dataset and push to hub")
|
371 |
+
gr.Markdown("Once you're satisfied with the sample, generate a larger dataset and push it to the hub.")
|
372 |
+
|
373 |
btn_login: gr.LoginButton | None = get_login_button()
|
374 |
with gr.Column() as push_to_hub_ui:
|
375 |
with gr.Row(variant="panel"):
|
|
|
406 |
orgs_selector,
|
407 |
dataset_name_push_to_hub,
|
408 |
],
|
409 |
+
outputs=[table],
|
410 |
+
show_progress=True,
|
411 |
)
|
412 |
|
413 |
app.load(get_org_dropdown, outputs=[orgs_selector])
|
414 |
+
app.load(fn=swap_visibilty, outputs=push_to_hub_ui)
|