davidberenstein1957
HF staff
Add requirements.txt for synthetic dataset generator dependency, update import paths for InferenceEndpointsLLM in multiple files, and modify example deployment script to comment out HF_TOKEN.
1fc08db
import warnings | |
import distilabel | |
import distilabel.distiset | |
from distilabel.models import InferenceEndpointsLLM | |
from pydantic import ( | |
ValidationError, | |
model_validator, | |
) | |
class CustomInferenceEndpointsLLM(InferenceEndpointsLLM): | |
# type: ignore | |
def only_one_of_model_id_endpoint_name_or_base_url_provided( | |
self, | |
) -> "InferenceEndpointsLLM": | |
"""Validates that only one of `model_id` or `endpoint_name` is provided; and if `base_url` is also | |
provided, a warning will be shown informing the user that the provided `base_url` will be ignored in | |
favour of the dynamically calculated one..""" | |
if self.base_url and (self.model_id or self.endpoint_name): | |
warnings.warn( # type: ignore | |
f"Since the `base_url={self.base_url}` is available and either one of `model_id`" | |
" or `endpoint_name` is also provided, the `base_url` will either be ignored" | |
" or overwritten with the one generated from either of those args, for serverless" | |
" or dedicated inference endpoints, respectively." | |
) | |
if self.use_magpie_template and self.tokenizer_id is None: | |
raise ValueError( | |
"`use_magpie_template` cannot be `True` if `tokenizer_id` is `None`. Please," | |
" set a `tokenizer_id` and try again." | |
) | |
if ( | |
self.model_id | |
and self.tokenizer_id is None | |
and self.structured_output is not None | |
): | |
self.tokenizer_id = self.model_id | |
if self.base_url and not (self.model_id or self.endpoint_name): | |
return self | |
if self.model_id and not self.endpoint_name: | |
return self | |
if self.endpoint_name and not self.model_id: | |
return self | |
raise ValidationError( | |
f"Only one of `model_id` or `endpoint_name` must be provided. If `base_url` is" | |
f" provided too, it will be overwritten instead. Found `model_id`={self.model_id}," | |
f" `endpoint_name`={self.endpoint_name}, and `base_url`={self.base_url}." | |
) | |
distilabel.models.llms.InferenceEndpointsLLM = CustomInferenceEndpointsLLM | |