davidberenstein1957's picture
fix: update example
e525bd5
raw
history blame
5.22 kB
import json
import os
import gradio as gr
from distilabel.llms import InferenceEndpointsLLM, LlamaCppLLM
from distilabel.steps.tasks.argillalabeller import ArgillaLabeller
file_path = os.path.join(os.path.dirname(__file__), "Qwen2-5-0.5B-Instruct-f16.gguf")
download_url = "https://huggingface.co/gaianet/Qwen2.5-0.5B-Instruct-GGUF/resolve/main/Qwen2.5-0.5B-Instruct-Q5_K_S.gguf?download=true"
if not os.path.exists(file_path):
import requests
import tqdm
response = requests.get(download_url, stream=True)
total_length = int(response.headers.get("content-length"))
with open(file_path, "wb") as f:
for chunk in tqdm.tqdm(
response.iter_content(chunk_size=1024 * 1024),
total=total_length / (1024 * 1024),
unit="KB",
unit_scale=True,
):
f.write(chunk)
llm_cpp = LlamaCppLLM(
model_path=file_path,
n_gpu_layers=-1,
n_ctx=1000 * 114,
generation_kwargs={"max_new_tokens": 1000 * 14},
)
task_cpp = ArgillaLabeller(llm=llm_cpp)
task_cpp.load()
llm_ep = InferenceEndpointsLLM(
model_id="meta-llama/Meta-Llama-3.1-8B-Instruct",
tokenizer_id="meta-llama/Meta-Llama-3.1-8B-Instruct",
generation_kwargs={"max_new_tokens": 1000},
)
task_ep = ArgillaLabeller(llm=llm_ep)
task_ep.load()
def load_examples():
with open("examples.json", "r") as f:
return json.load(f)
# Create Gradio examples
examples = load_examples()[:1]
def process_fields(fields):
if isinstance(fields, str):
fields = json.loads(fields)
if isinstance(fields, dict):
fields = [fields]
return [field if isinstance(field, dict) else json.loads(field) for field in fields]
def process_records_gradio(records, fields, question, example_records=None):
try:
# Convert string inputs to dictionaries
if isinstance(records, str) and records:
records = json.loads(records)
if isinstance(example_records, str) and example_records:
example_records = json.loads(example_records)
if isinstance(fields, str) and fields:
fields = json.loads(fields)
if isinstance(question, str) and question:
question = json.loads(question)
if not fields and not question:
raise Exception("Error: Either fields or question must be provided")
runtime_parameters = {"fields": fields, "question": question}
if example_records:
runtime_parameters["example_records"] = example_records
task_ep.set_runtime_parameters(runtime_parameters)
task_cpp.set_runtime_parameters(runtime_parameters)
results = []
try:
output = next(
task_ep.process(inputs=[{"record": record} for record in records])
)
except Exception:
output = next(
task_cpp.process(inputs=[{"record": record} for record in records])
)
for idx in range(len(records)):
entry = output[idx]
if entry["suggestions"]:
results.append(entry["suggestions"])
return json.dumps({"results": results}, indent=2)
except Exception as e:
raise gr.Error(f"Error: {str(e)}")
description = """
An example workflow for JSON payload.
```python
import json
import os
from gradio_client import Client
import argilla as rg
# Initialize Argilla client
gradio_client = Client("davidberenstein1957/distilabel-argilla-labeller")
argilla_client = rg.Argilla(
api_key=os.environ["ARGILLA_API_KEY"], api_url=os.environ["ARGILLA_API_URL"]
)
# Load the dataset
dataset = argilla_client.datasets(name="my_dataset", workspace="my_workspace")
# Get the field and question
field = dataset.settings.fields["text"]
question = dataset.settings.questions["sentiment"]
# Get completed and pending records
completed_records_filter = rg.Filter(("status", "==", "completed"))
pending_records_filter = rg.Filter(("status", "==", "pending"))
example_records = list(
dataset.records(
query=rg.Query(filter=completed_records_filter),
limit=5,
)
)
some_pending_records = list(
dataset.records(
query=rg.Query(filter=pending_records_filter),
limit=5,
)
)
# Process the records
payload = {
"records": [record.to_dict() for record in some_pending_records],
"fields": [field.serialize()],
"question": question.serialize(),
"example_records": [record.to_dict() for record in example_records],
"api_name": "/predict",
}
response = gradio_client.predict(**payload)
```
"""
interface = gr.Interface(
fn=process_records_gradio,
inputs=[
gr.Code(label="Records (JSON)", language="json", lines=5),
gr.Code(label="Example Records (JSON, optional)", language="json", lines=5),
gr.Code(label="Fields (JSON, optional)", language="json"),
gr.Code(label="Question (JSON, optional)", language="json"),
],
examples=examples,
cache_examples=False,
outputs=gr.Code(label="Suggestions", language="json", lines=10),
title="Distilabel - ArgillaLabeller - Record Processing Interface",
description=description,
)
if __name__ == "__main__":
interface.launch()