davidberenstein1957's picture
fix: working example with argillalabeller updates
6199610
raw
history blame
3.55 kB
import json
import gradio as gr
from distilabel.llms import InferenceEndpointsLLM
from distilabel.steps.tasks.argillalabeller import ArgillaLabeller
llm = InferenceEndpointsLLM(
model_id="meta-llama/Meta-Llama-3.1-8B-Instruct",
tokenizer_id="meta-llama/Meta-Llama-3.1-8B-Instruct",
generation_kwargs={"max_new_tokens": 1000 * 4},
)
task = ArgillaLabeller(llm=llm)
task.load()
def load_examples():
with open("examples.json", "r") as f:
return json.load(f)
# Create Gradio examples
examples = load_examples()
def process_fields(fields):
if isinstance(fields, str):
fields = json.loads(fields)
if isinstance(fields, dict):
fields = [fields]
return [field if isinstance(field, dict) else json.loads(field) for field in fields]
def process_records_gradio(records, fields, question, example_records=None):
try:
# Convert string inputs to dictionaries
records = json.loads(records)
example_records = json.loads(example_records) if example_records else None
fields = process_fields(fields) if fields else None
question = json.loads(question) if question else None
if not fields and not question:
return "Error: Either fields or question must be provided"
runtime_parameters = {"fields": fields, "question": question}
if example_records:
runtime_parameters["example_records"] = example_records
task.set_runtime_parameters(runtime_parameters)
results = []
output = task.process(inputs=[{"record": record} for record in records])
for _ in range(len(records)):
entry = next(output)[0]
if entry["suggestions"]:
results.append(entry["suggestions"])
return json.dumps({"results": results}, indent=2)
except Exception as e:
raise Exception(f"Error: {str(e)}")
description = """
An example workflow for JSON payload.
```python
import json
import os
from gradio_client import Client
import argilla as rg
# Initialize Argilla client
client = rg.Argilla(
api_key=os.environ["ARGILLA_API_KEY"], api_url=os.environ["ARGILLA_API_URL"]
)
# Load the dataset
dataset = client.datasets(name="my_dataset", workspace="my_workspace")
# Prepare example data
example_field = dataset.settings.fields["my_input_field"].serialize()
example_question = dataset.settings.questions["my_question_to_predict"].serialize()
payload = {
"records": [next(dataset.records()).to_dict()],
"fields": [example_field],
"question": example_question,
}
# Use gradio client to process the data
client = Client("davidberenstein1957/distilabel-argilla-labeller")
result = client.predict(
records=json.dumps(payload["records"]),
example_records=json.dumps(payload["example_records"]),
fields=json.dumps(payload["fields"]),
question=json.dumps(payload["question"]),
api_name="/predict"
)
```
"""
interface = gr.Interface(
fn=process_records_gradio,
inputs=[
gr.Code(label="Records (JSON)", language="json", lines=5),
gr.Code(label="Example Records (JSON, optional)", language="json", lines=5),
gr.Code(label="Fields (JSON, optional)", language="json"),
gr.Code(label="Question (JSON, optional)", language="json"),
],
examples=examples,
outputs=gr.Code(label="Suggestions", language="json", lines=10),
title="Distilabel - ArgillaLabeller - Record Processing Interface",
description=description,
)
if __name__ == "__main__":
interface.launch()