Spaces:
Runtime error
Runtime error
import os | |
import librosa | |
import numpy as np | |
import soundfile as sf | |
def crop_center(h1, h2): | |
h1_shape = h1.size() | |
h2_shape = h2.size() | |
if h1_shape[3] == h2_shape[3]: | |
return h1 | |
elif h1_shape[3] < h2_shape[3]: | |
raise ValueError('h1_shape[3] must be greater than h2_shape[3]') | |
# s_freq = (h2_shape[2] - h1_shape[2]) // 2 | |
# e_freq = s_freq + h1_shape[2] | |
s_time = (h1_shape[3] - h2_shape[3]) // 2 | |
e_time = s_time + h2_shape[3] | |
h1 = h1[:, :, :, s_time:e_time] | |
return h1 | |
def wave_to_spectrogram(wave, hop_length, n_fft): | |
wave_left = np.asfortranarray(wave[0]) | |
wave_right = np.asfortranarray(wave[1]) | |
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length) | |
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length) | |
spec = np.asfortranarray([spec_left, spec_right]) | |
return spec | |
def spectrogram_to_image(spec, mode='magnitude'): | |
if mode == 'magnitude': | |
if np.iscomplexobj(spec): | |
y = np.abs(spec) | |
else: | |
y = spec | |
y = np.log10(y ** 2 + 1e-8) | |
elif mode == 'phase': | |
if np.iscomplexobj(spec): | |
y = np.angle(spec) | |
else: | |
y = spec | |
y -= y.min() | |
y *= 255 / y.max() | |
img = np.uint8(y) | |
if y.ndim == 3: | |
img = img.transpose(1, 2, 0) | |
img = np.concatenate([ | |
np.max(img, axis=2, keepdims=True), img | |
], axis=2) | |
return img | |
def aggressively_remove_vocal(X, y, weight): | |
X_mag = np.abs(X) | |
y_mag = np.abs(y) | |
# v_mag = np.abs(X_mag - y_mag) | |
v_mag = X_mag - y_mag | |
v_mag *= v_mag > y_mag | |
y_mag = np.clip(y_mag - v_mag * weight, 0, np.inf) | |
return y_mag * np.exp(1.j * np.angle(y)) | |
def merge_artifacts(y_mask, thres=0.05, min_range=64, fade_size=32): | |
if min_range < fade_size * 2: | |
raise ValueError('min_range must be >= fade_size * 2') | |
idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0] | |
start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0]) | |
end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1]) | |
artifact_idx = np.where(end_idx - start_idx > min_range)[0] | |
weight = np.zeros_like(y_mask) | |
if len(artifact_idx) > 0: | |
start_idx = start_idx[artifact_idx] | |
end_idx = end_idx[artifact_idx] | |
old_e = None | |
for s, e in zip(start_idx, end_idx): | |
if old_e is not None and s - old_e < fade_size: | |
s = old_e - fade_size * 2 | |
if s != 0: | |
weight[:, :, s:s + fade_size] = np.linspace(0, 1, fade_size) | |
else: | |
s -= fade_size | |
if e != y_mask.shape[2]: | |
weight[:, :, e - fade_size:e] = np.linspace(1, 0, fade_size) | |
else: | |
e += fade_size | |
weight[:, :, s + fade_size:e - fade_size] = 1 | |
old_e = e | |
v_mask = 1 - y_mask | |
y_mask += weight * v_mask | |
return y_mask | |
def align_wave_head_and_tail(a, b, sr): | |
a, _ = librosa.effects.trim(a) | |
b, _ = librosa.effects.trim(b) | |
a_mono = a[:, :sr * 4].sum(axis=0) | |
b_mono = b[:, :sr * 4].sum(axis=0) | |
a_mono -= a_mono.mean() | |
b_mono -= b_mono.mean() | |
offset = len(a_mono) - 1 | |
delay = np.argmax(np.correlate(a_mono, b_mono, 'full')) - offset | |
if delay > 0: | |
a = a[:, delay:] | |
else: | |
b = b[:, np.abs(delay):] | |
if a.shape[1] < b.shape[1]: | |
b = b[:, :a.shape[1]] | |
else: | |
a = a[:, :b.shape[1]] | |
return a, b | |
def cache_or_load(mix_path, inst_path, sr, hop_length, n_fft): | |
mix_basename = os.path.splitext(os.path.basename(mix_path))[0] | |
inst_basename = os.path.splitext(os.path.basename(inst_path))[0] | |
cache_dir = 'sr{}_hl{}_nf{}'.format(sr, hop_length, n_fft) | |
mix_cache_dir = os.path.join(os.path.dirname(mix_path), cache_dir) | |
inst_cache_dir = os.path.join(os.path.dirname(inst_path), cache_dir) | |
os.makedirs(mix_cache_dir, exist_ok=True) | |
os.makedirs(inst_cache_dir, exist_ok=True) | |
mix_cache_path = os.path.join(mix_cache_dir, mix_basename + '.npy') | |
inst_cache_path = os.path.join(inst_cache_dir, inst_basename + '.npy') | |
if os.path.exists(mix_cache_path) and os.path.exists(inst_cache_path): | |
X = np.load(mix_cache_path) | |
y = np.load(inst_cache_path) | |
else: | |
X, _ = librosa.load( | |
mix_path, sr, False, dtype=np.float32, res_type='kaiser_fast') | |
y, _ = librosa.load( | |
inst_path, sr, False, dtype=np.float32, res_type='kaiser_fast') | |
X, y = align_wave_head_and_tail(X, y, sr) | |
X = wave_to_spectrogram(X, hop_length, n_fft) | |
y = wave_to_spectrogram(y, hop_length, n_fft) | |
np.save(mix_cache_path, X) | |
np.save(inst_cache_path, y) | |
return X, y, mix_cache_path, inst_cache_path | |
def spectrogram_to_wave(spec, hop_length=1024): | |
if spec.ndim == 2: | |
wave = librosa.istft(spec, hop_length=hop_length) | |
elif spec.ndim == 3: | |
spec_left = np.asfortranarray(spec[0]) | |
spec_right = np.asfortranarray(spec[1]) | |
wave_left = librosa.istft(spec_left, hop_length=hop_length) | |
wave_right = librosa.istft(spec_right, hop_length=hop_length) | |
wave = np.asfortranarray([wave_left, wave_right]) | |
return wave | |
if __name__ == "__main__": | |
import cv2 | |
import sys | |
bins = 2048 // 2 + 1 | |
freq_to_bin = 2 * bins / 44100 | |
unstable_bins = int(200 * freq_to_bin) | |
stable_bins = int(22050 * freq_to_bin) | |
reduction_weight = np.concatenate([ | |
np.linspace(0, 1, unstable_bins, dtype=np.float32)[:, None], | |
np.linspace(1, 0, stable_bins - unstable_bins, dtype=np.float32)[:, None], | |
np.zeros((bins - stable_bins, 1)) | |
], axis=0) * 0.2 | |
X, _ = librosa.load( | |
sys.argv[1], 44100, False, dtype=np.float32, res_type='kaiser_fast') | |
y, _ = librosa.load( | |
sys.argv[2], 44100, False, dtype=np.float32, res_type='kaiser_fast') | |
X, y = align_wave_head_and_tail(X, y, 44100) | |
X_spec = wave_to_spectrogram(X, 1024, 2048) | |
y_spec = wave_to_spectrogram(y, 1024, 2048) | |
X_mag = np.abs(X_spec) | |
y_mag = np.abs(y_spec) | |
# v_mag = np.abs(X_mag - y_mag) | |
v_mag = X_mag - y_mag | |
v_mag *= v_mag > y_mag | |
# y_mag = np.clip(y_mag - v_mag * reduction_weight, 0, np.inf) | |
y_spec = y_mag * np.exp(1j * np.angle(y_spec)) | |
v_spec = v_mag * np.exp(1j * np.angle(X_spec)) | |
X_image = spectrogram_to_image(X_mag) | |
y_image = spectrogram_to_image(y_mag) | |
v_image = spectrogram_to_image(v_mag) | |
cv2.imwrite('test_X.jpg', X_image) | |
cv2.imwrite('test_y.jpg', y_image) | |
cv2.imwrite('test_v.jpg', v_image) | |
sf.write('test_X.wav', spectrogram_to_wave(X_spec).T, 44100) | |
sf.write('test_y.wav', spectrogram_to_wave(y_spec).T, 44100) | |
sf.write('test_v.wav', spectrogram_to_wave(v_spec).T, 44100) | |