Spaces:
Runtime error
Runtime error
added lib
Browse files- lib/__init__.py +0 -0
- lib/__pycache__/__init__.cpython-38.pyc +0 -0
- lib/__pycache__/dataset.cpython-38.pyc +0 -0
- lib/__pycache__/layers.cpython-38.pyc +0 -0
- lib/__pycache__/nets.cpython-38.pyc +0 -0
- lib/__pycache__/spec_utils.cpython-38.pyc +0 -0
- lib/__pycache__/utils.cpython-38.pyc +0 -0
- lib/dataset.py +257 -0
- lib/layers.py +160 -0
- lib/nets.py +131 -0
- lib/spec_utils.py +227 -0
- lib/utils.py +30 -0
lib/__init__.py
ADDED
File without changes
|
lib/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (156 Bytes). View file
|
|
lib/__pycache__/dataset.cpython-38.pyc
ADDED
Binary file (7.19 kB). View file
|
|
lib/__pycache__/layers.cpython-38.pyc
ADDED
Binary file (4.48 kB). View file
|
|
lib/__pycache__/nets.cpython-38.pyc
ADDED
Binary file (3.8 kB). View file
|
|
lib/__pycache__/spec_utils.cpython-38.pyc
ADDED
Binary file (5.33 kB). View file
|
|
lib/__pycache__/utils.cpython-38.pyc
ADDED
Binary file (887 Bytes). View file
|
|
lib/dataset.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.utils.data
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
try:
|
10 |
+
from lib import spec_utils
|
11 |
+
except ModuleNotFoundError:
|
12 |
+
import spec_utils
|
13 |
+
|
14 |
+
|
15 |
+
class VocalRemoverTrainingSet(torch.utils.data.Dataset):
|
16 |
+
|
17 |
+
def __init__(self, training_set, cropsize, reduction_rate, reduction_weight, mixup_rate, mixup_alpha):
|
18 |
+
self.training_set = training_set
|
19 |
+
self.cropsize = cropsize
|
20 |
+
self.reduction_rate = reduction_rate
|
21 |
+
self.reduction_weight = reduction_weight
|
22 |
+
self.mixup_rate = mixup_rate
|
23 |
+
self.mixup_alpha = mixup_alpha
|
24 |
+
|
25 |
+
def __len__(self):
|
26 |
+
return len(self.training_set)
|
27 |
+
|
28 |
+
def do_crop(self, X_path, y_path):
|
29 |
+
X_mmap = np.load(X_path, mmap_mode='r')
|
30 |
+
y_mmap = np.load(y_path, mmap_mode='r')
|
31 |
+
|
32 |
+
start = np.random.randint(0, X_mmap.shape[2] - self.cropsize)
|
33 |
+
end = start + self.cropsize
|
34 |
+
|
35 |
+
X_crop = np.array(X_mmap[:, :, start:end], copy=True)
|
36 |
+
y_crop = np.array(y_mmap[:, :, start:end], copy=True)
|
37 |
+
|
38 |
+
return X_crop, y_crop
|
39 |
+
|
40 |
+
def do_aug(self, X, y):
|
41 |
+
if np.random.uniform() < self.reduction_rate:
|
42 |
+
y = spec_utils.aggressively_remove_vocal(X, y, self.reduction_weight)
|
43 |
+
|
44 |
+
if np.random.uniform() < 0.5:
|
45 |
+
# swap channel
|
46 |
+
X = X[::-1].copy()
|
47 |
+
y = y[::-1].copy()
|
48 |
+
|
49 |
+
if np.random.uniform() < 0.01:
|
50 |
+
# inst
|
51 |
+
X = y.copy()
|
52 |
+
|
53 |
+
# if np.random.uniform() < 0.01:
|
54 |
+
# # mono
|
55 |
+
# X[:] = X.mean(axis=0, keepdims=True)
|
56 |
+
# y[:] = y.mean(axis=0, keepdims=True)
|
57 |
+
|
58 |
+
return X, y
|
59 |
+
|
60 |
+
def do_mixup(self, X, y):
|
61 |
+
idx = np.random.randint(0, len(self))
|
62 |
+
X_path, y_path, coef = self.training_set[idx]
|
63 |
+
|
64 |
+
X_i, y_i = self.do_crop(X_path, y_path)
|
65 |
+
X_i /= coef
|
66 |
+
y_i /= coef
|
67 |
+
|
68 |
+
X_i, y_i = self.do_aug(X_i, y_i)
|
69 |
+
|
70 |
+
lam = np.random.beta(self.mixup_alpha, self.mixup_alpha)
|
71 |
+
X = lam * X + (1 - lam) * X_i
|
72 |
+
y = lam * y + (1 - lam) * y_i
|
73 |
+
|
74 |
+
return X, y
|
75 |
+
|
76 |
+
def __getitem__(self, idx):
|
77 |
+
X_path, y_path, coef = self.training_set[idx]
|
78 |
+
|
79 |
+
X, y = self.do_crop(X_path, y_path)
|
80 |
+
X /= coef
|
81 |
+
y /= coef
|
82 |
+
|
83 |
+
X, y = self.do_aug(X, y)
|
84 |
+
|
85 |
+
if np.random.uniform() < self.mixup_rate:
|
86 |
+
X, y = self.do_mixup(X, y)
|
87 |
+
|
88 |
+
X_mag = np.abs(X)
|
89 |
+
y_mag = np.abs(y)
|
90 |
+
|
91 |
+
return X_mag, y_mag
|
92 |
+
|
93 |
+
|
94 |
+
class VocalRemoverValidationSet(torch.utils.data.Dataset):
|
95 |
+
|
96 |
+
def __init__(self, patch_list):
|
97 |
+
self.patch_list = patch_list
|
98 |
+
|
99 |
+
def __len__(self):
|
100 |
+
return len(self.patch_list)
|
101 |
+
|
102 |
+
def __getitem__(self, idx):
|
103 |
+
path = self.patch_list[idx]
|
104 |
+
data = np.load(path)
|
105 |
+
|
106 |
+
X, y = data['X'], data['y']
|
107 |
+
|
108 |
+
X_mag = np.abs(X)
|
109 |
+
y_mag = np.abs(y)
|
110 |
+
|
111 |
+
return X_mag, y_mag
|
112 |
+
|
113 |
+
|
114 |
+
def make_pair(mix_dir, inst_dir):
|
115 |
+
input_exts = ['.wav', '.m4a', '.mp3', '.mp4', '.flac']
|
116 |
+
|
117 |
+
X_list = sorted([
|
118 |
+
os.path.join(mix_dir, fname)
|
119 |
+
for fname in os.listdir(mix_dir)
|
120 |
+
if os.path.splitext(fname)[1] in input_exts
|
121 |
+
])
|
122 |
+
y_list = sorted([
|
123 |
+
os.path.join(inst_dir, fname)
|
124 |
+
for fname in os.listdir(inst_dir)
|
125 |
+
if os.path.splitext(fname)[1] in input_exts
|
126 |
+
])
|
127 |
+
|
128 |
+
filelist = list(zip(X_list, y_list))
|
129 |
+
|
130 |
+
return filelist
|
131 |
+
|
132 |
+
|
133 |
+
def train_val_split(dataset_dir, split_mode, val_rate, val_filelist):
|
134 |
+
if split_mode == 'random':
|
135 |
+
filelist = make_pair(
|
136 |
+
os.path.join(dataset_dir, 'mixtures'),
|
137 |
+
os.path.join(dataset_dir, 'instruments')
|
138 |
+
)
|
139 |
+
|
140 |
+
random.shuffle(filelist)
|
141 |
+
|
142 |
+
if len(val_filelist) == 0:
|
143 |
+
val_size = int(len(filelist) * val_rate)
|
144 |
+
train_filelist = filelist[:-val_size]
|
145 |
+
val_filelist = filelist[-val_size:]
|
146 |
+
else:
|
147 |
+
train_filelist = [
|
148 |
+
pair for pair in filelist
|
149 |
+
if list(pair) not in val_filelist
|
150 |
+
]
|
151 |
+
elif split_mode == 'subdirs':
|
152 |
+
if len(val_filelist) != 0:
|
153 |
+
raise ValueError('`val_filelist` option is not available with `subdirs` mode')
|
154 |
+
|
155 |
+
train_filelist = make_pair(
|
156 |
+
os.path.join(dataset_dir, 'training/mixtures'),
|
157 |
+
os.path.join(dataset_dir, 'training/instruments')
|
158 |
+
)
|
159 |
+
|
160 |
+
val_filelist = make_pair(
|
161 |
+
os.path.join(dataset_dir, 'validation/mixtures'),
|
162 |
+
os.path.join(dataset_dir, 'validation/instruments')
|
163 |
+
)
|
164 |
+
|
165 |
+
return train_filelist, val_filelist
|
166 |
+
|
167 |
+
|
168 |
+
def make_padding(width, cropsize, offset):
|
169 |
+
left = offset
|
170 |
+
roi_size = cropsize - offset * 2
|
171 |
+
if roi_size == 0:
|
172 |
+
roi_size = cropsize
|
173 |
+
right = roi_size - (width % roi_size) + left
|
174 |
+
|
175 |
+
return left, right, roi_size
|
176 |
+
|
177 |
+
|
178 |
+
def make_training_set(filelist, sr, hop_length, n_fft):
|
179 |
+
ret = []
|
180 |
+
for X_path, y_path in tqdm(filelist):
|
181 |
+
X, y, X_cache_path, y_cache_path = spec_utils.cache_or_load(
|
182 |
+
X_path, y_path, sr, hop_length, n_fft
|
183 |
+
)
|
184 |
+
coef = np.max([np.abs(X).max(), np.abs(y).max()])
|
185 |
+
ret.append([X_cache_path, y_cache_path, coef])
|
186 |
+
|
187 |
+
return ret
|
188 |
+
|
189 |
+
|
190 |
+
def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset):
|
191 |
+
patch_list = []
|
192 |
+
patch_dir = 'cs{}_sr{}_hl{}_nf{}_of{}'.format(cropsize, sr, hop_length, n_fft, offset)
|
193 |
+
os.makedirs(patch_dir, exist_ok=True)
|
194 |
+
|
195 |
+
for X_path, y_path in tqdm(filelist):
|
196 |
+
basename = os.path.splitext(os.path.basename(X_path))[0]
|
197 |
+
|
198 |
+
X, y, _, _ = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
|
199 |
+
coef = np.max([np.abs(X).max(), np.abs(y).max()])
|
200 |
+
X, y = X / coef, y / coef
|
201 |
+
|
202 |
+
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
|
203 |
+
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
|
204 |
+
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
|
205 |
+
|
206 |
+
len_dataset = int(np.ceil(X.shape[2] / roi_size))
|
207 |
+
for j in range(len_dataset):
|
208 |
+
outpath = os.path.join(patch_dir, '{}_p{}.npz'.format(basename, j))
|
209 |
+
start = j * roi_size
|
210 |
+
if not os.path.exists(outpath):
|
211 |
+
np.savez(
|
212 |
+
outpath,
|
213 |
+
X=X_pad[:, :, start:start + cropsize],
|
214 |
+
y=y_pad[:, :, start:start + cropsize]
|
215 |
+
)
|
216 |
+
patch_list.append(outpath)
|
217 |
+
|
218 |
+
return patch_list
|
219 |
+
|
220 |
+
|
221 |
+
def get_oracle_data(X, y, oracle_loss, oracle_rate, oracle_drop_rate):
|
222 |
+
k = int(len(X) * oracle_rate * (1 / (1 - oracle_drop_rate)))
|
223 |
+
n = int(len(X) * oracle_rate)
|
224 |
+
indices = np.argsort(oracle_loss)[::-1][:k]
|
225 |
+
indices = np.random.choice(indices, n, replace=False)
|
226 |
+
oracle_X = X[indices].copy()
|
227 |
+
oracle_y = y[indices].copy()
|
228 |
+
|
229 |
+
return oracle_X, oracle_y, indices
|
230 |
+
|
231 |
+
|
232 |
+
if __name__ == "__main__":
|
233 |
+
import sys
|
234 |
+
import utils
|
235 |
+
|
236 |
+
mix_dir = sys.argv[1]
|
237 |
+
inst_dir = sys.argv[2]
|
238 |
+
outdir = sys.argv[3]
|
239 |
+
|
240 |
+
os.makedirs(outdir, exist_ok=True)
|
241 |
+
|
242 |
+
filelist = make_pair(mix_dir, inst_dir)
|
243 |
+
for mix_path, inst_path in tqdm(filelist):
|
244 |
+
mix_basename = os.path.splitext(os.path.basename(mix_path))[0]
|
245 |
+
|
246 |
+
X_spec, y_spec, _, _ = spec_utils.cache_or_load(
|
247 |
+
mix_path, inst_path, 44100, 1024, 2048
|
248 |
+
)
|
249 |
+
|
250 |
+
X_mag = np.abs(X_spec)
|
251 |
+
y_mag = np.abs(y_spec)
|
252 |
+
v_mag = X_mag - y_mag
|
253 |
+
v_mag *= v_mag > y_mag
|
254 |
+
|
255 |
+
outpath = '{}/{}_Vocal.jpg'.format(outdir, mix_basename)
|
256 |
+
v_image = spec_utils.spectrogram_to_image(v_mag)
|
257 |
+
utils.imwrite(outpath, v_image)
|
lib/layers.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from lib import spec_utils
|
6 |
+
|
7 |
+
|
8 |
+
class Conv2DBNActiv(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
11 |
+
super(Conv2DBNActiv, self).__init__()
|
12 |
+
self.conv = nn.Sequential(
|
13 |
+
nn.Conv2d(
|
14 |
+
nin, nout,
|
15 |
+
kernel_size=ksize,
|
16 |
+
stride=stride,
|
17 |
+
padding=pad,
|
18 |
+
dilation=dilation,
|
19 |
+
bias=False
|
20 |
+
),
|
21 |
+
nn.BatchNorm2d(nout),
|
22 |
+
activ()
|
23 |
+
)
|
24 |
+
|
25 |
+
def __call__(self, x):
|
26 |
+
return self.conv(x)
|
27 |
+
|
28 |
+
|
29 |
+
# class SeperableConv2DBNActiv(nn.Module):
|
30 |
+
|
31 |
+
# def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
32 |
+
# super(SeperableConv2DBNActiv, self).__init__()
|
33 |
+
# self.conv = nn.Sequential(
|
34 |
+
# nn.Conv2d(
|
35 |
+
# nin, nin,
|
36 |
+
# kernel_size=ksize,
|
37 |
+
# stride=stride,
|
38 |
+
# padding=pad,
|
39 |
+
# dilation=dilation,
|
40 |
+
# groups=nin,
|
41 |
+
# bias=False
|
42 |
+
# ),
|
43 |
+
# nn.Conv2d(
|
44 |
+
# nin, nout,
|
45 |
+
# kernel_size=1,
|
46 |
+
# bias=False
|
47 |
+
# ),
|
48 |
+
# nn.BatchNorm2d(nout),
|
49 |
+
# activ()
|
50 |
+
# )
|
51 |
+
|
52 |
+
# def __call__(self, x):
|
53 |
+
# return self.conv(x)
|
54 |
+
|
55 |
+
|
56 |
+
class Encoder(nn.Module):
|
57 |
+
|
58 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
59 |
+
super(Encoder, self).__init__()
|
60 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, stride, pad, activ=activ)
|
61 |
+
self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
|
62 |
+
|
63 |
+
def __call__(self, x):
|
64 |
+
h = self.conv1(x)
|
65 |
+
h = self.conv2(h)
|
66 |
+
|
67 |
+
return h
|
68 |
+
|
69 |
+
|
70 |
+
class Decoder(nn.Module):
|
71 |
+
|
72 |
+
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
73 |
+
super(Decoder, self).__init__()
|
74 |
+
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
75 |
+
# self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
|
76 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
77 |
+
|
78 |
+
def __call__(self, x, skip=None):
|
79 |
+
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
80 |
+
|
81 |
+
if skip is not None:
|
82 |
+
skip = spec_utils.crop_center(skip, x)
|
83 |
+
x = torch.cat([x, skip], dim=1)
|
84 |
+
|
85 |
+
h = self.conv1(x)
|
86 |
+
# h = self.conv2(h)
|
87 |
+
|
88 |
+
if self.dropout is not None:
|
89 |
+
h = self.dropout(h)
|
90 |
+
|
91 |
+
return h
|
92 |
+
|
93 |
+
|
94 |
+
class ASPPModule(nn.Module):
|
95 |
+
|
96 |
+
def __init__(self, nin, nout, dilations=(4, 8, 12), activ=nn.ReLU, dropout=False):
|
97 |
+
super(ASPPModule, self).__init__()
|
98 |
+
self.conv1 = nn.Sequential(
|
99 |
+
nn.AdaptiveAvgPool2d((1, None)),
|
100 |
+
Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
|
101 |
+
)
|
102 |
+
self.conv2 = Conv2DBNActiv(
|
103 |
+
nin, nout, 1, 1, 0, activ=activ
|
104 |
+
)
|
105 |
+
self.conv3 = Conv2DBNActiv(
|
106 |
+
nin, nout, 3, 1, dilations[0], dilations[0], activ=activ
|
107 |
+
)
|
108 |
+
self.conv4 = Conv2DBNActiv(
|
109 |
+
nin, nout, 3, 1, dilations[1], dilations[1], activ=activ
|
110 |
+
)
|
111 |
+
self.conv5 = Conv2DBNActiv(
|
112 |
+
nin, nout, 3, 1, dilations[2], dilations[2], activ=activ
|
113 |
+
)
|
114 |
+
self.bottleneck = Conv2DBNActiv(
|
115 |
+
nout * 5, nout, 1, 1, 0, activ=activ
|
116 |
+
)
|
117 |
+
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
_, _, h, w = x.size()
|
121 |
+
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
122 |
+
feat2 = self.conv2(x)
|
123 |
+
feat3 = self.conv3(x)
|
124 |
+
feat4 = self.conv4(x)
|
125 |
+
feat5 = self.conv5(x)
|
126 |
+
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
127 |
+
out = self.bottleneck(out)
|
128 |
+
|
129 |
+
if self.dropout is not None:
|
130 |
+
out = self.dropout(out)
|
131 |
+
|
132 |
+
return out
|
133 |
+
|
134 |
+
|
135 |
+
class LSTMModule(nn.Module):
|
136 |
+
|
137 |
+
def __init__(self, nin_conv, nin_lstm, nout_lstm):
|
138 |
+
super(LSTMModule, self).__init__()
|
139 |
+
self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0)
|
140 |
+
self.lstm = nn.LSTM(
|
141 |
+
input_size=nin_lstm,
|
142 |
+
hidden_size=nout_lstm // 2,
|
143 |
+
bidirectional=True
|
144 |
+
)
|
145 |
+
self.dense = nn.Sequential(
|
146 |
+
nn.Linear(nout_lstm, nin_lstm),
|
147 |
+
nn.BatchNorm1d(nin_lstm),
|
148 |
+
nn.ReLU()
|
149 |
+
)
|
150 |
+
|
151 |
+
def forward(self, x):
|
152 |
+
N, _, nbins, nframes = x.size()
|
153 |
+
h = self.conv(x)[:, 0] # N, nbins, nframes
|
154 |
+
h = h.permute(2, 0, 1) # nframes, N, nbins
|
155 |
+
h, _ = self.lstm(h)
|
156 |
+
h = self.dense(h.reshape(-1, h.size()[-1])) # nframes * N, nbins
|
157 |
+
h = h.reshape(nframes, N, 1, nbins)
|
158 |
+
h = h.permute(1, 2, 3, 0)
|
159 |
+
|
160 |
+
return h
|
lib/nets.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from lib import layers
|
6 |
+
|
7 |
+
|
8 |
+
class BaseNet(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))):
|
11 |
+
super(BaseNet, self).__init__()
|
12 |
+
self.enc1 = layers.Conv2DBNActiv(nin, nout, 3, 1, 1)
|
13 |
+
self.enc2 = layers.Encoder(nout, nout * 2, 3, 2, 1)
|
14 |
+
self.enc3 = layers.Encoder(nout * 2, nout * 4, 3, 2, 1)
|
15 |
+
self.enc4 = layers.Encoder(nout * 4, nout * 6, 3, 2, 1)
|
16 |
+
self.enc5 = layers.Encoder(nout * 6, nout * 8, 3, 2, 1)
|
17 |
+
|
18 |
+
self.aspp = layers.ASPPModule(nout * 8, nout * 8, dilations, dropout=True)
|
19 |
+
|
20 |
+
self.dec4 = layers.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1)
|
21 |
+
self.dec3 = layers.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1)
|
22 |
+
self.dec2 = layers.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1)
|
23 |
+
self.lstm_dec2 = layers.LSTMModule(nout * 2, nin_lstm, nout_lstm)
|
24 |
+
self.dec1 = layers.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1)
|
25 |
+
|
26 |
+
def __call__(self, x):
|
27 |
+
e1 = self.enc1(x)
|
28 |
+
e2 = self.enc2(e1)
|
29 |
+
e3 = self.enc3(e2)
|
30 |
+
e4 = self.enc4(e3)
|
31 |
+
e5 = self.enc5(e4)
|
32 |
+
|
33 |
+
h = self.aspp(e5)
|
34 |
+
|
35 |
+
h = self.dec4(h, e4)
|
36 |
+
h = self.dec3(h, e3)
|
37 |
+
h = self.dec2(h, e2)
|
38 |
+
h = torch.cat([h, self.lstm_dec2(h)], dim=1)
|
39 |
+
h = self.dec1(h, e1)
|
40 |
+
|
41 |
+
return h
|
42 |
+
|
43 |
+
|
44 |
+
class CascadedNet(nn.Module):
|
45 |
+
|
46 |
+
def __init__(self, n_fft, nout=32, nout_lstm=128):
|
47 |
+
super(CascadedNet, self).__init__()
|
48 |
+
self.max_bin = n_fft // 2
|
49 |
+
self.output_bin = n_fft // 2 + 1
|
50 |
+
self.nin_lstm = self.max_bin // 2
|
51 |
+
self.offset = 64
|
52 |
+
|
53 |
+
self.stg1_low_band_net = nn.Sequential(
|
54 |
+
BaseNet(2, nout // 2, self.nin_lstm // 2, nout_lstm),
|
55 |
+
layers.Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0)
|
56 |
+
)
|
57 |
+
self.stg1_high_band_net = BaseNet(
|
58 |
+
2, nout // 4, self.nin_lstm // 2, nout_lstm // 2
|
59 |
+
)
|
60 |
+
|
61 |
+
self.stg2_low_band_net = nn.Sequential(
|
62 |
+
BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm),
|
63 |
+
layers.Conv2DBNActiv(nout, nout // 2, 1, 1, 0)
|
64 |
+
)
|
65 |
+
self.stg2_high_band_net = BaseNet(
|
66 |
+
nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2
|
67 |
+
)
|
68 |
+
|
69 |
+
self.stg3_full_band_net = BaseNet(
|
70 |
+
3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm
|
71 |
+
)
|
72 |
+
|
73 |
+
self.out = nn.Conv2d(nout, 2, 1, bias=False)
|
74 |
+
self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False)
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
x = x[:, :, :self.max_bin]
|
78 |
+
|
79 |
+
bandw = x.size()[2] // 2
|
80 |
+
l1_in = x[:, :, :bandw]
|
81 |
+
h1_in = x[:, :, bandw:]
|
82 |
+
l1 = self.stg1_low_band_net(l1_in)
|
83 |
+
h1 = self.stg1_high_band_net(h1_in)
|
84 |
+
aux1 = torch.cat([l1, h1], dim=2)
|
85 |
+
|
86 |
+
l2_in = torch.cat([l1_in, l1], dim=1)
|
87 |
+
h2_in = torch.cat([h1_in, h1], dim=1)
|
88 |
+
l2 = self.stg2_low_band_net(l2_in)
|
89 |
+
h2 = self.stg2_high_band_net(h2_in)
|
90 |
+
aux2 = torch.cat([l2, h2], dim=2)
|
91 |
+
|
92 |
+
f3_in = torch.cat([x, aux1, aux2], dim=1)
|
93 |
+
f3 = self.stg3_full_band_net(f3_in)
|
94 |
+
|
95 |
+
mask = torch.sigmoid(self.out(f3))
|
96 |
+
mask = F.pad(
|
97 |
+
input=mask,
|
98 |
+
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
99 |
+
mode='replicate'
|
100 |
+
)
|
101 |
+
|
102 |
+
if self.training:
|
103 |
+
aux = torch.cat([aux1, aux2], dim=1)
|
104 |
+
aux = torch.sigmoid(self.aux_out(aux))
|
105 |
+
aux = F.pad(
|
106 |
+
input=aux,
|
107 |
+
pad=(0, 0, 0, self.output_bin - aux.size()[2]),
|
108 |
+
mode='replicate'
|
109 |
+
)
|
110 |
+
return mask, aux
|
111 |
+
else:
|
112 |
+
return mask
|
113 |
+
|
114 |
+
def predict_mask(self, x):
|
115 |
+
mask = self.forward(x)
|
116 |
+
|
117 |
+
if self.offset > 0:
|
118 |
+
mask = mask[:, :, :, self.offset:-self.offset]
|
119 |
+
assert mask.size()[3] > 0
|
120 |
+
|
121 |
+
return mask
|
122 |
+
|
123 |
+
def predict(self, x):
|
124 |
+
mask = self.forward(x)
|
125 |
+
pred_mag = x * mask
|
126 |
+
|
127 |
+
if self.offset > 0:
|
128 |
+
pred_mag = pred_mag[:, :, :, self.offset:-self.offset]
|
129 |
+
assert pred_mag.size()[3] > 0
|
130 |
+
|
131 |
+
return pred_mag
|
lib/spec_utils.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import librosa
|
4 |
+
import numpy as np
|
5 |
+
import soundfile as sf
|
6 |
+
|
7 |
+
|
8 |
+
def crop_center(h1, h2):
|
9 |
+
h1_shape = h1.size()
|
10 |
+
h2_shape = h2.size()
|
11 |
+
|
12 |
+
if h1_shape[3] == h2_shape[3]:
|
13 |
+
return h1
|
14 |
+
elif h1_shape[3] < h2_shape[3]:
|
15 |
+
raise ValueError('h1_shape[3] must be greater than h2_shape[3]')
|
16 |
+
|
17 |
+
# s_freq = (h2_shape[2] - h1_shape[2]) // 2
|
18 |
+
# e_freq = s_freq + h1_shape[2]
|
19 |
+
s_time = (h1_shape[3] - h2_shape[3]) // 2
|
20 |
+
e_time = s_time + h2_shape[3]
|
21 |
+
h1 = h1[:, :, :, s_time:e_time]
|
22 |
+
|
23 |
+
return h1
|
24 |
+
|
25 |
+
|
26 |
+
def wave_to_spectrogram(wave, hop_length, n_fft):
|
27 |
+
wave_left = np.asfortranarray(wave[0])
|
28 |
+
wave_right = np.asfortranarray(wave[1])
|
29 |
+
|
30 |
+
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
|
31 |
+
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
|
32 |
+
spec = np.asfortranarray([spec_left, spec_right])
|
33 |
+
|
34 |
+
return spec
|
35 |
+
|
36 |
+
|
37 |
+
def spectrogram_to_image(spec, mode='magnitude'):
|
38 |
+
if mode == 'magnitude':
|
39 |
+
if np.iscomplexobj(spec):
|
40 |
+
y = np.abs(spec)
|
41 |
+
else:
|
42 |
+
y = spec
|
43 |
+
y = np.log10(y ** 2 + 1e-8)
|
44 |
+
elif mode == 'phase':
|
45 |
+
if np.iscomplexobj(spec):
|
46 |
+
y = np.angle(spec)
|
47 |
+
else:
|
48 |
+
y = spec
|
49 |
+
|
50 |
+
y -= y.min()
|
51 |
+
y *= 255 / y.max()
|
52 |
+
img = np.uint8(y)
|
53 |
+
|
54 |
+
if y.ndim == 3:
|
55 |
+
img = img.transpose(1, 2, 0)
|
56 |
+
img = np.concatenate([
|
57 |
+
np.max(img, axis=2, keepdims=True), img
|
58 |
+
], axis=2)
|
59 |
+
|
60 |
+
return img
|
61 |
+
|
62 |
+
|
63 |
+
def aggressively_remove_vocal(X, y, weight):
|
64 |
+
X_mag = np.abs(X)
|
65 |
+
y_mag = np.abs(y)
|
66 |
+
# v_mag = np.abs(X_mag - y_mag)
|
67 |
+
v_mag = X_mag - y_mag
|
68 |
+
v_mag *= v_mag > y_mag
|
69 |
+
|
70 |
+
y_mag = np.clip(y_mag - v_mag * weight, 0, np.inf)
|
71 |
+
|
72 |
+
return y_mag * np.exp(1.j * np.angle(y))
|
73 |
+
|
74 |
+
|
75 |
+
def merge_artifacts(y_mask, thres=0.05, min_range=64, fade_size=32):
|
76 |
+
if min_range < fade_size * 2:
|
77 |
+
raise ValueError('min_range must be >= fade_size * 2')
|
78 |
+
|
79 |
+
idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0]
|
80 |
+
start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
|
81 |
+
end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
|
82 |
+
artifact_idx = np.where(end_idx - start_idx > min_range)[0]
|
83 |
+
weight = np.zeros_like(y_mask)
|
84 |
+
if len(artifact_idx) > 0:
|
85 |
+
start_idx = start_idx[artifact_idx]
|
86 |
+
end_idx = end_idx[artifact_idx]
|
87 |
+
old_e = None
|
88 |
+
for s, e in zip(start_idx, end_idx):
|
89 |
+
if old_e is not None and s - old_e < fade_size:
|
90 |
+
s = old_e - fade_size * 2
|
91 |
+
|
92 |
+
if s != 0:
|
93 |
+
weight[:, :, s:s + fade_size] = np.linspace(0, 1, fade_size)
|
94 |
+
else:
|
95 |
+
s -= fade_size
|
96 |
+
|
97 |
+
if e != y_mask.shape[2]:
|
98 |
+
weight[:, :, e - fade_size:e] = np.linspace(1, 0, fade_size)
|
99 |
+
else:
|
100 |
+
e += fade_size
|
101 |
+
|
102 |
+
weight[:, :, s + fade_size:e - fade_size] = 1
|
103 |
+
old_e = e
|
104 |
+
|
105 |
+
v_mask = 1 - y_mask
|
106 |
+
y_mask += weight * v_mask
|
107 |
+
|
108 |
+
return y_mask
|
109 |
+
|
110 |
+
|
111 |
+
def align_wave_head_and_tail(a, b, sr):
|
112 |
+
a, _ = librosa.effects.trim(a)
|
113 |
+
b, _ = librosa.effects.trim(b)
|
114 |
+
|
115 |
+
a_mono = a[:, :sr * 4].sum(axis=0)
|
116 |
+
b_mono = b[:, :sr * 4].sum(axis=0)
|
117 |
+
|
118 |
+
a_mono -= a_mono.mean()
|
119 |
+
b_mono -= b_mono.mean()
|
120 |
+
|
121 |
+
offset = len(a_mono) - 1
|
122 |
+
delay = np.argmax(np.correlate(a_mono, b_mono, 'full')) - offset
|
123 |
+
|
124 |
+
if delay > 0:
|
125 |
+
a = a[:, delay:]
|
126 |
+
else:
|
127 |
+
b = b[:, np.abs(delay):]
|
128 |
+
|
129 |
+
if a.shape[1] < b.shape[1]:
|
130 |
+
b = b[:, :a.shape[1]]
|
131 |
+
else:
|
132 |
+
a = a[:, :b.shape[1]]
|
133 |
+
|
134 |
+
return a, b
|
135 |
+
|
136 |
+
|
137 |
+
def cache_or_load(mix_path, inst_path, sr, hop_length, n_fft):
|
138 |
+
mix_basename = os.path.splitext(os.path.basename(mix_path))[0]
|
139 |
+
inst_basename = os.path.splitext(os.path.basename(inst_path))[0]
|
140 |
+
|
141 |
+
cache_dir = 'sr{}_hl{}_nf{}'.format(sr, hop_length, n_fft)
|
142 |
+
mix_cache_dir = os.path.join(os.path.dirname(mix_path), cache_dir)
|
143 |
+
inst_cache_dir = os.path.join(os.path.dirname(inst_path), cache_dir)
|
144 |
+
os.makedirs(mix_cache_dir, exist_ok=True)
|
145 |
+
os.makedirs(inst_cache_dir, exist_ok=True)
|
146 |
+
|
147 |
+
mix_cache_path = os.path.join(mix_cache_dir, mix_basename + '.npy')
|
148 |
+
inst_cache_path = os.path.join(inst_cache_dir, inst_basename + '.npy')
|
149 |
+
|
150 |
+
if os.path.exists(mix_cache_path) and os.path.exists(inst_cache_path):
|
151 |
+
X = np.load(mix_cache_path)
|
152 |
+
y = np.load(inst_cache_path)
|
153 |
+
else:
|
154 |
+
X, _ = librosa.load(
|
155 |
+
mix_path, sr, False, dtype=np.float32, res_type='kaiser_fast')
|
156 |
+
y, _ = librosa.load(
|
157 |
+
inst_path, sr, False, dtype=np.float32, res_type='kaiser_fast')
|
158 |
+
|
159 |
+
X, y = align_wave_head_and_tail(X, y, sr)
|
160 |
+
|
161 |
+
X = wave_to_spectrogram(X, hop_length, n_fft)
|
162 |
+
y = wave_to_spectrogram(y, hop_length, n_fft)
|
163 |
+
|
164 |
+
np.save(mix_cache_path, X)
|
165 |
+
np.save(inst_cache_path, y)
|
166 |
+
|
167 |
+
return X, y, mix_cache_path, inst_cache_path
|
168 |
+
|
169 |
+
|
170 |
+
def spectrogram_to_wave(spec, hop_length=1024):
|
171 |
+
if spec.ndim == 2:
|
172 |
+
wave = librosa.istft(spec, hop_length=hop_length)
|
173 |
+
elif spec.ndim == 3:
|
174 |
+
spec_left = np.asfortranarray(spec[0])
|
175 |
+
spec_right = np.asfortranarray(spec[1])
|
176 |
+
|
177 |
+
wave_left = librosa.istft(spec_left, hop_length=hop_length)
|
178 |
+
wave_right = librosa.istft(spec_right, hop_length=hop_length)
|
179 |
+
wave = np.asfortranarray([wave_left, wave_right])
|
180 |
+
|
181 |
+
return wave
|
182 |
+
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
import cv2
|
186 |
+
import sys
|
187 |
+
|
188 |
+
bins = 2048 // 2 + 1
|
189 |
+
freq_to_bin = 2 * bins / 44100
|
190 |
+
unstable_bins = int(200 * freq_to_bin)
|
191 |
+
stable_bins = int(22050 * freq_to_bin)
|
192 |
+
reduction_weight = np.concatenate([
|
193 |
+
np.linspace(0, 1, unstable_bins, dtype=np.float32)[:, None],
|
194 |
+
np.linspace(1, 0, stable_bins - unstable_bins, dtype=np.float32)[:, None],
|
195 |
+
np.zeros((bins - stable_bins, 1))
|
196 |
+
], axis=0) * 0.2
|
197 |
+
|
198 |
+
X, _ = librosa.load(
|
199 |
+
sys.argv[1], 44100, False, dtype=np.float32, res_type='kaiser_fast')
|
200 |
+
y, _ = librosa.load(
|
201 |
+
sys.argv[2], 44100, False, dtype=np.float32, res_type='kaiser_fast')
|
202 |
+
|
203 |
+
X, y = align_wave_head_and_tail(X, y, 44100)
|
204 |
+
X_spec = wave_to_spectrogram(X, 1024, 2048)
|
205 |
+
y_spec = wave_to_spectrogram(y, 1024, 2048)
|
206 |
+
|
207 |
+
X_mag = np.abs(X_spec)
|
208 |
+
y_mag = np.abs(y_spec)
|
209 |
+
# v_mag = np.abs(X_mag - y_mag)
|
210 |
+
v_mag = X_mag - y_mag
|
211 |
+
v_mag *= v_mag > y_mag
|
212 |
+
|
213 |
+
# y_mag = np.clip(y_mag - v_mag * reduction_weight, 0, np.inf)
|
214 |
+
y_spec = y_mag * np.exp(1j * np.angle(y_spec))
|
215 |
+
v_spec = v_mag * np.exp(1j * np.angle(X_spec))
|
216 |
+
|
217 |
+
X_image = spectrogram_to_image(X_mag)
|
218 |
+
y_image = spectrogram_to_image(y_mag)
|
219 |
+
v_image = spectrogram_to_image(v_mag)
|
220 |
+
|
221 |
+
cv2.imwrite('test_X.jpg', X_image)
|
222 |
+
cv2.imwrite('test_y.jpg', y_image)
|
223 |
+
cv2.imwrite('test_v.jpg', v_image)
|
224 |
+
|
225 |
+
sf.write('test_X.wav', spectrogram_to_wave(X_spec).T, 44100)
|
226 |
+
sf.write('test_y.wav', spectrogram_to_wave(y_spec).T, 44100)
|
227 |
+
sf.write('test_v.wav', spectrogram_to_wave(v_spec).T, 44100)
|
lib/utils.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
def imread(filename, flags=cv2.IMREAD_COLOR, dtype=np.uint8):
|
8 |
+
try:
|
9 |
+
n = np.fromfile(filename, dtype)
|
10 |
+
img = cv2.imdecode(n, flags)
|
11 |
+
return img
|
12 |
+
except Exception as e:
|
13 |
+
print(e)
|
14 |
+
return None
|
15 |
+
|
16 |
+
|
17 |
+
def imwrite(filename, img, params=None):
|
18 |
+
try:
|
19 |
+
ext = os.path.splitext(filename)[1]
|
20 |
+
result, n = cv2.imencode(ext, img, params)
|
21 |
+
|
22 |
+
if result:
|
23 |
+
with open(filename, mode='w+b') as f:
|
24 |
+
n.tofile(f)
|
25 |
+
return True
|
26 |
+
else:
|
27 |
+
return False
|
28 |
+
except Exception as e:
|
29 |
+
print(e)
|
30 |
+
return False
|