Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# coding: utf-8 | |
# In[1]: | |
import pandas as pd | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import init, MarginRankingLoss | |
from torch.optim import Adam | |
from distutils.version import LooseVersion | |
from torch.utils.data import Dataset, DataLoader | |
from torch.autograd import Variable | |
import math | |
from transformers import AutoConfig, AutoModel, AutoTokenizer | |
import nltk | |
import re | |
import torch.optim as optim | |
from tqdm import tqdm | |
from transformers import AutoModelForMaskedLM | |
import torch.nn.functional as F | |
import random | |
# In[2]: | |
maskis = [] | |
n_y = [] | |
class MyDataset(Dataset): | |
def __init__(self,file_name): | |
global maskis | |
global n_y | |
df = pd.read_csv(file_name) | |
df = df.fillna("") | |
self.inp_dicts = [] | |
for r in range(df.shape[0]): | |
X_init = df['X'][r] | |
y = df['y'][r] | |
n_y.append(y) | |
nl = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\d+', y) | |
lb = ' '.join(nl).lower() | |
x = tokenizer.tokenize(lb) | |
num_sub_tokens_label = len(x) | |
X_init = X_init.replace("[MASK]", " ".join([tokenizer.mask_token] * num_sub_tokens_label)) | |
tokens = tokenizer.encode_plus(X_init, add_special_tokens=False,return_tensors='pt') | |
input_id_chunki = tokens['input_ids'][0].split(510) | |
input_id_chunks = [] | |
mask_chunks = [] | |
mask_chunki = tokens['attention_mask'][0].split(510) | |
for tensor in input_id_chunki: | |
input_id_chunks.append(tensor) | |
for tensor in mask_chunki: | |
mask_chunks.append(tensor) | |
xi = torch.full((1,), fill_value=101) | |
yi = torch.full((1,), fill_value=1) | |
zi = torch.full((1,), fill_value=102) | |
for r in range(len(input_id_chunks)): | |
input_id_chunks[r] = torch.cat([xi, input_id_chunks[r]],dim = -1) | |
input_id_chunks[r] = torch.cat([input_id_chunks[r],zi],dim=-1) | |
mask_chunks[r] = torch.cat([yi, mask_chunks[r]],dim=-1) | |
mask_chunks[r] = torch.cat([mask_chunks[r],yi],dim=-1) | |
di = torch.full((1,), fill_value=0) | |
for i in range(len(input_id_chunks)): | |
pad_len = 512 - input_id_chunks[i].shape[0] | |
if pad_len > 0: | |
for p in range(pad_len): | |
input_id_chunks[i] = torch.cat([input_id_chunks[i],di],dim=-1) | |
mask_chunks[i] = torch.cat([mask_chunks[i],di],dim=-1) | |
vb = torch.ones_like(input_id_chunks[0]) | |
fg = torch.zeros_like(input_id_chunks[0]) | |
maski = [] | |
for l in range(len(input_id_chunks)): | |
masked_pos = [] | |
for i in range(len(input_id_chunks[l])): | |
if input_id_chunks[l][i] == tokenizer.mask_token_id: #103 | |
if i != 0 and input_id_chunks[l][i-1] == tokenizer.mask_token_id: | |
continue | |
masked_pos.append(i) | |
maski.append(masked_pos) | |
maskis.append(maski) | |
while (len(input_id_chunks)<250): | |
input_id_chunks.append(vb) | |
mask_chunks.append(fg) | |
input_ids = torch.stack(input_id_chunks) | |
attention_mask = torch.stack(mask_chunks) | |
input_dict = { | |
'input_ids': input_ids.long(), | |
'attention_mask': attention_mask.int() | |
} | |
self.inp_dicts.append(input_dict) | |
del input_dict | |
del input_ids | |
del attention_mask | |
del maski | |
del mask_chunks | |
del input_id_chunks | |
del di | |
del fg | |
del vb | |
del mask_chunki | |
del input_id_chunki | |
del X_init | |
del y | |
del tokens | |
del x | |
del lb | |
del nl | |
del df | |
def __len__(self): | |
return len(self.inp_dicts) | |
def __getitem__(self,idx): | |
return self.inp_dicts[idx] | |
# In[3]: | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/graphcodebert-base") | |
model = AutoModelForMaskedLM.from_pretrained("microsoft/graphcodebert-base") | |
base_model = AutoModelForMaskedLM.from_pretrained("microsoft/graphcodebert-base") | |
model.load_state_dict(torch.load('var_runs/model_26_2')) | |
model.eval() | |
base_model.eval() | |
myDs=MyDataset('d_t.csv') | |
train_loader=DataLoader(myDs,batch_size=1,shuffle=False) | |
# In[4]: | |
variable_names = [ | |
# One-word Variable Names | |
'count', 'value', 'result', 'flag', 'max', 'min', 'data', 'input', 'output', 'name', 'index', 'status', 'error', 'message', 'price', 'quantity', 'total', 'length', 'size', 'score', | |
# Two-word Variable Names | |
'studentName', 'accountBalance', 'isFound', 'maxScore', 'userAge', 'carModel', 'bookTitle', 'arrayLength', 'employeeID', 'itemPrice', 'customerAddress', 'productCategory', 'orderNumber', 'transactionType', 'bankAccount', 'shippingMethod', 'deliveryDate', 'purchaseAmount', 'inventoryItem', 'salesRevenue', | |
# Three-word Variable Names | |
'numberOfStudents', 'averageTemperature', 'userIsLoggedIn', 'totalSalesAmount', 'employeeSalaryRate', 'maxAllowedAttempts', 'selectedOption', 'shippingAddress', 'manufacturingDate', 'connectionPool', 'customerAccountBalance', 'employeeSalaryReport', 'productInventoryCount', 'transactionProcessingStatus', 'userAuthenticationToken', 'orderShippingAddress', 'databaseConnectionPoolSize', 'vehicleEngineTemperature', 'sensorDataProcessingRate', 'employeePayrollSystem', | |
# Four-word Variable Names | |
'customerAccountBalanceValue', 'employeeSalaryReportData', 'productInventoryItemCount', 'transactionProcessingStatusFlag', 'userAuthenticationTokenKey', 'orderShippingAddressDetails', 'databaseConnectionPoolMaxSize', 'vehicleEngineTemperatureReading', 'sensorDataProcessingRateLimit', 'employeePayrollSystemData', 'customerOrderShippingAddress', 'productCatalogItemNumber', 'transactionProcessingSuccessFlag', 'userAuthenticationAccessToken', 'databaseConnectionPoolConfig', 'vehicleEngineTemperatureSensor', 'sensorDataProcessingRateLimitation', 'employeePayrollSystemConfiguration', 'customerAccountBalanceHistoryData', 'transactionProcessingStatusTracking' | |
] | |
var_list = [] | |
for j in range(6): | |
d =[] | |
var_list.append(d) | |
for var in variable_names: | |
try: | |
var_list[len(tokenizer.tokenize(var))-1].append(var) | |
except: | |
continue | |
# In[5]: | |
tot_pll = 0.0 | |
base_tot_pll = 0.0 | |
loop = tqdm(train_loader, leave=True) | |
cntr = 0 | |
for batch in loop: | |
maxi = torch.tensor(0.0, requires_grad=True) | |
for i in range(len(batch['input_ids'])): | |
cntr+=1 | |
maski = maskis[cntr-1] | |
li = len(maski) | |
input_ids = batch['input_ids'][i][:li] | |
att_mask = batch['attention_mask'][i][:li] | |
y = n_y[cntr-1] | |
ty = tokenizer.encode(y)[1:-1] | |
num_sub_tokens_label = len(ty) | |
if num_sub_tokens_label > 6: | |
continue | |
print("Ground truth:", y) | |
m_y = random.choice(var_list[num_sub_tokens_label-1]) | |
m_ty = tokenizer.encode(m_y)[1:-1] | |
print("Mock truth:", m_y) | |
# input_ids, att_mask = input_ids.to(device),att_mask.to(device) | |
outputs = model(input_ids, attention_mask = att_mask) | |
base_outputs = base_model(input_ids, attention_mask = att_mask) | |
last_hidden_state = outputs[0].squeeze() | |
base_last_hidden_state = base_outputs[0].squeeze() | |
l_o_l_sa = [] | |
base_l_o_l_sa = [] | |
sum_state = [] | |
base_sum_state = [] | |
for t in range(num_sub_tokens_label): | |
c = [] | |
d = [] | |
l_o_l_sa.append(c) | |
base_l_o_l_sa.append(d) | |
if len(maski) == 1: | |
masked_pos = maski[0] | |
for k in masked_pos: | |
for t in range(num_sub_tokens_label): | |
l_o_l_sa[t].append(last_hidden_state[k+t]) | |
base_l_o_l_sa[t].append(base_last_hidden_state[k+t]) | |
else: | |
for p in range(len(maski)): | |
masked_pos = maski[p] | |
for k in masked_pos: | |
for t in range(num_sub_tokens_label): | |
if (k+t) >= len(last_hidden_state[p]): | |
l_o_l_sa[t].append(last_hidden_state[p+1][k+t-len(last_hidden_state[p])]) | |
base_l_o_l_sa[t].append(base_last_hidden_state[p+1][k+t-len(base_last_hidden_state[p])]) | |
continue | |
l_o_l_sa[t].append(last_hidden_state[p][k+t]) | |
base_l_o_l_sa[t].append(base_last_hidden_state[p][k+t]) | |
for t in range(num_sub_tokens_label): | |
sum_state.append(l_o_l_sa[t][0]) | |
base_sum_state.append(base_l_o_l_sa[t][0]) | |
for i in range(len(l_o_l_sa[0])): | |
if i == 0: | |
continue | |
for t in range(num_sub_tokens_label): | |
sum_state[t] = sum_state[t] + l_o_l_sa[t][i] | |
base_sum_state[t] = base_sum_state[t] + base_l_o_l_sa[t][i] | |
yip = len(l_o_l_sa[0]) | |
val = 0.0 | |
m_val = 0.0 | |
m_base_val = 0.0 | |
base_val = 0.0 | |
for t in range(num_sub_tokens_label): | |
sum_state[t] /= yip | |
base_sum_state[t] /= yip | |
probs = F.softmax(sum_state[t], dim=0) | |
base_probs = F.softmax(base_sum_state[t], dim=0) | |
val = val - torch.log(probs[ty[t]]) | |
m_val = m_val - torch.log(probs[m_ty[t]]) | |
base_val = base_val - torch.log(base_probs[ty[t]]) | |
m_base_val = m_base_val - torch.log(base_probs[m_ty[t]]) | |
val = val / num_sub_tokens_label | |
base_val = base_val / num_sub_tokens_label | |
m_val = m_val / num_sub_tokens_label | |
m_base_val = m_base_val / num_sub_tokens_label | |
print("Sent PLL:") | |
print(val) | |
print("Base Sent PLL:") | |
print(base_val) | |
print("Net % difference:") | |
diff = (val-base_val)*100/base_val | |
print(diff) | |
tot_pll += val | |
base_tot_pll+=base_val | |
print() | |
print() | |
print("Mock Sent PLL:") | |
print(m_val) | |
print("Mock Base Sent PLL:") | |
print(m_base_val) | |
print("Mock Net % difference:") | |
m_diff = (m_val-m_base_val)*100/m_base_val | |
print(m_diff) | |
for c in sum_state: | |
del c | |
for d in base_sum_state: | |
del d | |
del sum_state | |
del base_sum_state | |
for c in l_o_l_sa: | |
del c | |
for c in base_l_o_l_sa: | |
del c | |
del l_o_l_sa | |
del base_l_o_l_sa | |
del maski | |
del input_ids | |
del att_mask | |
del last_hidden_state | |
del base_last_hidden_state | |
print("Tot PLL: ", tot_pll) | |
print("Base Tot PLL: ", base_tot_pll) | |
# In[ ]: | |