Spaces:
Sleeping
Sleeping
Upload comp.py
Browse files
comp.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from torch import nn
|
11 |
+
from torch.nn import init, MarginRankingLoss
|
12 |
+
from torch.optim import Adam
|
13 |
+
from distutils.version import LooseVersion
|
14 |
+
from torch.utils.data import Dataset, DataLoader
|
15 |
+
from torch.autograd import Variable
|
16 |
+
import math
|
17 |
+
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
18 |
+
import nltk
|
19 |
+
import re
|
20 |
+
import torch.optim as optim
|
21 |
+
from tqdm import tqdm
|
22 |
+
from transformers import AutoModelForMaskedLM
|
23 |
+
import torch.nn.functional as F
|
24 |
+
import random
|
25 |
+
|
26 |
+
|
27 |
+
# In[2]:
|
28 |
+
|
29 |
+
|
30 |
+
maskis = []
|
31 |
+
n_y = []
|
32 |
+
class MyDataset(Dataset):
|
33 |
+
def __init__(self,file_name):
|
34 |
+
global maskis
|
35 |
+
global n_y
|
36 |
+
df = pd.read_csv(file_name)
|
37 |
+
df = df.fillna("")
|
38 |
+
self.inp_dicts = []
|
39 |
+
for r in range(df.shape[0]):
|
40 |
+
X_init = df['X'][r]
|
41 |
+
y = df['y'][r]
|
42 |
+
n_y.append(y)
|
43 |
+
nl = re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))|[a-z]+|\d+', y)
|
44 |
+
lb = ' '.join(nl).lower()
|
45 |
+
x = tokenizer.tokenize(lb)
|
46 |
+
num_sub_tokens_label = len(x)
|
47 |
+
X_init = X_init.replace("[MASK]", " ".join([tokenizer.mask_token] * num_sub_tokens_label))
|
48 |
+
tokens = tokenizer.encode_plus(X_init, add_special_tokens=False,return_tensors='pt')
|
49 |
+
input_id_chunki = tokens['input_ids'][0].split(510)
|
50 |
+
input_id_chunks = []
|
51 |
+
mask_chunks = []
|
52 |
+
mask_chunki = tokens['attention_mask'][0].split(510)
|
53 |
+
for tensor in input_id_chunki:
|
54 |
+
input_id_chunks.append(tensor)
|
55 |
+
for tensor in mask_chunki:
|
56 |
+
mask_chunks.append(tensor)
|
57 |
+
xi = torch.full((1,), fill_value=101)
|
58 |
+
yi = torch.full((1,), fill_value=1)
|
59 |
+
zi = torch.full((1,), fill_value=102)
|
60 |
+
for r in range(len(input_id_chunks)):
|
61 |
+
input_id_chunks[r] = torch.cat([xi, input_id_chunks[r]],dim = -1)
|
62 |
+
input_id_chunks[r] = torch.cat([input_id_chunks[r],zi],dim=-1)
|
63 |
+
mask_chunks[r] = torch.cat([yi, mask_chunks[r]],dim=-1)
|
64 |
+
mask_chunks[r] = torch.cat([mask_chunks[r],yi],dim=-1)
|
65 |
+
di = torch.full((1,), fill_value=0)
|
66 |
+
for i in range(len(input_id_chunks)):
|
67 |
+
pad_len = 512 - input_id_chunks[i].shape[0]
|
68 |
+
if pad_len > 0:
|
69 |
+
for p in range(pad_len):
|
70 |
+
input_id_chunks[i] = torch.cat([input_id_chunks[i],di],dim=-1)
|
71 |
+
mask_chunks[i] = torch.cat([mask_chunks[i],di],dim=-1)
|
72 |
+
vb = torch.ones_like(input_id_chunks[0])
|
73 |
+
fg = torch.zeros_like(input_id_chunks[0])
|
74 |
+
maski = []
|
75 |
+
for l in range(len(input_id_chunks)):
|
76 |
+
masked_pos = []
|
77 |
+
for i in range(len(input_id_chunks[l])):
|
78 |
+
if input_id_chunks[l][i] == tokenizer.mask_token_id: #103
|
79 |
+
if i != 0 and input_id_chunks[l][i-1] == tokenizer.mask_token_id:
|
80 |
+
continue
|
81 |
+
masked_pos.append(i)
|
82 |
+
maski.append(masked_pos)
|
83 |
+
maskis.append(maski)
|
84 |
+
while (len(input_id_chunks)<250):
|
85 |
+
input_id_chunks.append(vb)
|
86 |
+
mask_chunks.append(fg)
|
87 |
+
input_ids = torch.stack(input_id_chunks)
|
88 |
+
attention_mask = torch.stack(mask_chunks)
|
89 |
+
input_dict = {
|
90 |
+
'input_ids': input_ids.long(),
|
91 |
+
'attention_mask': attention_mask.int()
|
92 |
+
}
|
93 |
+
self.inp_dicts.append(input_dict)
|
94 |
+
del input_dict
|
95 |
+
del input_ids
|
96 |
+
del attention_mask
|
97 |
+
del maski
|
98 |
+
del mask_chunks
|
99 |
+
del input_id_chunks
|
100 |
+
del di
|
101 |
+
del fg
|
102 |
+
del vb
|
103 |
+
del mask_chunki
|
104 |
+
del input_id_chunki
|
105 |
+
del X_init
|
106 |
+
del y
|
107 |
+
del tokens
|
108 |
+
del x
|
109 |
+
del lb
|
110 |
+
del nl
|
111 |
+
del df
|
112 |
+
def __len__(self):
|
113 |
+
return len(self.inp_dicts)
|
114 |
+
def __getitem__(self,idx):
|
115 |
+
return self.inp_dicts[idx]
|
116 |
+
|
117 |
+
|
118 |
+
# In[3]:
|
119 |
+
|
120 |
+
|
121 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/graphcodebert-base")
|
122 |
+
model = AutoModelForMaskedLM.from_pretrained("microsoft/graphcodebert-base")
|
123 |
+
base_model = AutoModelForMaskedLM.from_pretrained("microsoft/graphcodebert-base")
|
124 |
+
model.load_state_dict(torch.load('var_runs/model_26_2'))
|
125 |
+
model.eval()
|
126 |
+
base_model.eval()
|
127 |
+
myDs=MyDataset('d_t.csv')
|
128 |
+
train_loader=DataLoader(myDs,batch_size=1,shuffle=False)
|
129 |
+
|
130 |
+
|
131 |
+
# In[4]:
|
132 |
+
|
133 |
+
|
134 |
+
variable_names = [
|
135 |
+
# One-word Variable Names
|
136 |
+
'count', 'value', 'result', 'flag', 'max', 'min', 'data', 'input', 'output', 'name', 'index', 'status', 'error', 'message', 'price', 'quantity', 'total', 'length', 'size', 'score',
|
137 |
+
|
138 |
+
# Two-word Variable Names
|
139 |
+
'studentName', 'accountBalance', 'isFound', 'maxScore', 'userAge', 'carModel', 'bookTitle', 'arrayLength', 'employeeID', 'itemPrice', 'customerAddress', 'productCategory', 'orderNumber', 'transactionType', 'bankAccount', 'shippingMethod', 'deliveryDate', 'purchaseAmount', 'inventoryItem', 'salesRevenue',
|
140 |
+
|
141 |
+
# Three-word Variable Names
|
142 |
+
'numberOfStudents', 'averageTemperature', 'userIsLoggedIn', 'totalSalesAmount', 'employeeSalaryRate', 'maxAllowedAttempts', 'selectedOption', 'shippingAddress', 'manufacturingDate', 'connectionPool', 'customerAccountBalance', 'employeeSalaryReport', 'productInventoryCount', 'transactionProcessingStatus', 'userAuthenticationToken', 'orderShippingAddress', 'databaseConnectionPoolSize', 'vehicleEngineTemperature', 'sensorDataProcessingRate', 'employeePayrollSystem',
|
143 |
+
|
144 |
+
# Four-word Variable Names
|
145 |
+
'customerAccountBalanceValue', 'employeeSalaryReportData', 'productInventoryItemCount', 'transactionProcessingStatusFlag', 'userAuthenticationTokenKey', 'orderShippingAddressDetails', 'databaseConnectionPoolMaxSize', 'vehicleEngineTemperatureReading', 'sensorDataProcessingRateLimit', 'employeePayrollSystemData', 'customerOrderShippingAddress', 'productCatalogItemNumber', 'transactionProcessingSuccessFlag', 'userAuthenticationAccessToken', 'databaseConnectionPoolConfig', 'vehicleEngineTemperatureSensor', 'sensorDataProcessingRateLimitation', 'employeePayrollSystemConfiguration', 'customerAccountBalanceHistoryData', 'transactionProcessingStatusTracking'
|
146 |
+
]
|
147 |
+
var_list = []
|
148 |
+
for j in range(6):
|
149 |
+
d =[]
|
150 |
+
var_list.append(d)
|
151 |
+
for var in variable_names:
|
152 |
+
try:
|
153 |
+
var_list[len(tokenizer.tokenize(var))-1].append(var)
|
154 |
+
except:
|
155 |
+
continue
|
156 |
+
|
157 |
+
|
158 |
+
# In[5]:
|
159 |
+
|
160 |
+
|
161 |
+
tot_pll = 0.0
|
162 |
+
base_tot_pll = 0.0
|
163 |
+
loop = tqdm(train_loader, leave=True)
|
164 |
+
cntr = 0
|
165 |
+
for batch in loop:
|
166 |
+
maxi = torch.tensor(0.0, requires_grad=True)
|
167 |
+
for i in range(len(batch['input_ids'])):
|
168 |
+
cntr+=1
|
169 |
+
maski = maskis[cntr-1]
|
170 |
+
li = len(maski)
|
171 |
+
input_ids = batch['input_ids'][i][:li]
|
172 |
+
att_mask = batch['attention_mask'][i][:li]
|
173 |
+
y = n_y[cntr-1]
|
174 |
+
ty = tokenizer.encode(y)[1:-1]
|
175 |
+
num_sub_tokens_label = len(ty)
|
176 |
+
if num_sub_tokens_label > 6:
|
177 |
+
continue
|
178 |
+
print("Ground truth:", y)
|
179 |
+
m_y = random.choice(var_list[num_sub_tokens_label-1])
|
180 |
+
m_ty = tokenizer.encode(m_y)[1:-1]
|
181 |
+
print("Mock truth:", m_y)
|
182 |
+
# input_ids, att_mask = input_ids.to(device),att_mask.to(device)
|
183 |
+
outputs = model(input_ids, attention_mask = att_mask)
|
184 |
+
base_outputs = base_model(input_ids, attention_mask = att_mask)
|
185 |
+
last_hidden_state = outputs[0].squeeze()
|
186 |
+
base_last_hidden_state = base_outputs[0].squeeze()
|
187 |
+
l_o_l_sa = []
|
188 |
+
base_l_o_l_sa = []
|
189 |
+
sum_state = []
|
190 |
+
base_sum_state = []
|
191 |
+
for t in range(num_sub_tokens_label):
|
192 |
+
c = []
|
193 |
+
d = []
|
194 |
+
l_o_l_sa.append(c)
|
195 |
+
base_l_o_l_sa.append(d)
|
196 |
+
if len(maski) == 1:
|
197 |
+
masked_pos = maski[0]
|
198 |
+
for k in masked_pos:
|
199 |
+
for t in range(num_sub_tokens_label):
|
200 |
+
l_o_l_sa[t].append(last_hidden_state[k+t])
|
201 |
+
base_l_o_l_sa[t].append(base_last_hidden_state[k+t])
|
202 |
+
else:
|
203 |
+
for p in range(len(maski)):
|
204 |
+
masked_pos = maski[p]
|
205 |
+
for k in masked_pos:
|
206 |
+
for t in range(num_sub_tokens_label):
|
207 |
+
if (k+t) >= len(last_hidden_state[p]):
|
208 |
+
l_o_l_sa[t].append(last_hidden_state[p+1][k+t-len(last_hidden_state[p])])
|
209 |
+
base_l_o_l_sa[t].append(base_last_hidden_state[p+1][k+t-len(base_last_hidden_state[p])])
|
210 |
+
continue
|
211 |
+
l_o_l_sa[t].append(last_hidden_state[p][k+t])
|
212 |
+
base_l_o_l_sa[t].append(base_last_hidden_state[p][k+t])
|
213 |
+
for t in range(num_sub_tokens_label):
|
214 |
+
sum_state.append(l_o_l_sa[t][0])
|
215 |
+
base_sum_state.append(base_l_o_l_sa[t][0])
|
216 |
+
for i in range(len(l_o_l_sa[0])):
|
217 |
+
if i == 0:
|
218 |
+
continue
|
219 |
+
for t in range(num_sub_tokens_label):
|
220 |
+
sum_state[t] = sum_state[t] + l_o_l_sa[t][i]
|
221 |
+
base_sum_state[t] = base_sum_state[t] + base_l_o_l_sa[t][i]
|
222 |
+
yip = len(l_o_l_sa[0])
|
223 |
+
val = 0.0
|
224 |
+
m_val = 0.0
|
225 |
+
m_base_val = 0.0
|
226 |
+
base_val = 0.0
|
227 |
+
for t in range(num_sub_tokens_label):
|
228 |
+
sum_state[t] /= yip
|
229 |
+
base_sum_state[t] /= yip
|
230 |
+
probs = F.softmax(sum_state[t], dim=0)
|
231 |
+
base_probs = F.softmax(base_sum_state[t], dim=0)
|
232 |
+
val = val - torch.log(probs[ty[t]])
|
233 |
+
m_val = m_val - torch.log(probs[m_ty[t]])
|
234 |
+
base_val = base_val - torch.log(base_probs[ty[t]])
|
235 |
+
m_base_val = m_base_val - torch.log(base_probs[m_ty[t]])
|
236 |
+
val = val / num_sub_tokens_label
|
237 |
+
base_val = base_val / num_sub_tokens_label
|
238 |
+
m_val = m_val / num_sub_tokens_label
|
239 |
+
m_base_val = m_base_val / num_sub_tokens_label
|
240 |
+
print("Sent PLL:")
|
241 |
+
print(val)
|
242 |
+
print("Base Sent PLL:")
|
243 |
+
print(base_val)
|
244 |
+
print("Net % difference:")
|
245 |
+
diff = (val-base_val)*100/base_val
|
246 |
+
print(diff)
|
247 |
+
tot_pll += val
|
248 |
+
base_tot_pll+=base_val
|
249 |
+
print()
|
250 |
+
print()
|
251 |
+
print("Mock Sent PLL:")
|
252 |
+
print(m_val)
|
253 |
+
print("Mock Base Sent PLL:")
|
254 |
+
print(m_base_val)
|
255 |
+
print("Mock Net % difference:")
|
256 |
+
m_diff = (m_val-m_base_val)*100/m_base_val
|
257 |
+
print(m_diff)
|
258 |
+
for c in sum_state:
|
259 |
+
del c
|
260 |
+
for d in base_sum_state:
|
261 |
+
del d
|
262 |
+
del sum_state
|
263 |
+
del base_sum_state
|
264 |
+
for c in l_o_l_sa:
|
265 |
+
del c
|
266 |
+
for c in base_l_o_l_sa:
|
267 |
+
del c
|
268 |
+
del l_o_l_sa
|
269 |
+
del base_l_o_l_sa
|
270 |
+
del maski
|
271 |
+
del input_ids
|
272 |
+
del att_mask
|
273 |
+
del last_hidden_state
|
274 |
+
del base_last_hidden_state
|
275 |
+
print("Tot PLL: ", tot_pll)
|
276 |
+
print("Base Tot PLL: ", base_tot_pll)
|
277 |
+
|
278 |
+
|
279 |
+
# In[ ]:
|
280 |
+
|
281 |
+
|
282 |
+
|
283 |
+
|