angusfung's picture
Initial setup with Longformer embedding feature
7812756
raw
history blame contribute delete
8.27 kB
import requests
import json
import pprint
import time
import sys
import os
import numpy as np
def check_internet_connectivity():
"""Check if we can connect to the internet"""
print("Testing internet connectivity...")
try:
response = requests.get("https://huggingface.co", timeout=5)
print(f"Connection to huggingface.co: Status {response.status_code}")
return response.status_code == 200
except Exception as e:
print(f"Error connecting to huggingface.co: {str(e)}")
return False
def check_model_repository():
"""Check if we can connect to the specific model repository"""
print("Testing connection to model repository...")
try:
# Try to access the model repository
url = "https://huggingface.co/allenai/longformer-base-4096"
response = requests.get(url, timeout=5)
print(f"Connection to model repository: Status {response.status_code}")
return response.status_code == 200
except Exception as e:
print(f"Error connecting to model repository: {str(e)}")
return False
def check_debug_endpoint(api_url):
"""Check the debug endpoint for diagnostic information"""
print(f"Checking debug endpoint at {api_url.replace('/predict', '/debug')}...")
try:
response = requests.get(api_url.replace("/predict", "/debug"), timeout=10)
if response.status_code == 200:
debug_info = response.json()
print("Debug information retrieved:")
print(f"- API Status: {debug_info.get('api_status', 'Unknown')}")
print(f"- Model Loaded: {debug_info.get('model_loaded', 'Unknown')}")
print(f"- Cache Directory Exists: {debug_info.get('model_cache_exists', 'Unknown')}")
print(f"- Temp Directory Writable: {debug_info.get('tmp_directory_writable', 'Unknown')}")
# Check internet connectivity from the server
internet_check = debug_info.get('internet_connectivity', {})
print(f"- Server Internet Connectivity: {internet_check.get('status', 'Unknown')}")
if internet_check.get('message'):
print(f" Message: {internet_check.get('message')}")
# Check tokenizer test
tokenizer_test = debug_info.get('tokenizer_test', {})
print(f"- Tokenizer Test: {tokenizer_test.get('status', 'Unknown')}")
if tokenizer_test.get('message'):
print(f" Message: {tokenizer_test.get('message')}")
# Check disk space
disk_space = debug_info.get('disk_space', {})
if disk_space.get('status') == 'ok':
print(f"- Disk Space: Total: {disk_space.get('total_gb', 0):.2f} GB, Used: {disk_space.get('used_gb', 0):.2f} GB, Free: {disk_space.get('free_gb', 0):.2f} GB ({disk_space.get('percent_used', 0):.1f}% used)")
return debug_info
else:
print(f"Error accessing debug endpoint: Status {response.status_code}")
print(response.text)
return None
except Exception as e:
print(f"Exception when accessing debug endpoint: {str(e)}")
return None
# API endpoint on Hugging Face Spaces
API_URL = "https://angusfung-kickstarter-success-prediction.hf.space/predict"
# Sample input data (similar to what would be in input.json)
campaign_data = {
"raw_description": "Introducing the AquaGo: The Smart, Eco-Friendly Portable Water Purifier! Clean water is a basic human right β€” yet for millions around the world, it's a daily struggle. Whether you're an outdoor adventurer, traveling to remote areas, or preparing for emergencies, access to safe drinking water should never be a compromise. That's why we created **AquaGo**, a revolutionary portable water purifier that combines cutting-edge filtration technology, smart sensors, and sustainable materials β€” all packed into a sleek, lightweight design you can take anywhere.",
"raw_blurb": "AquaGo is a smart, eco-friendly portable water purifier that delivers clean, safe drinking water anywhere.",
"raw_risks": "Bringing a product to market involves complex engineering, regulatory approvals, and safety testing. Delays may occur due to certification or supply chain issues.",
"raw_subcategory": "Gadgets",
"raw_category": "Technology",
"raw_country": "Canada",
"funding_goal": 2000,
"image_count": 8,
"video_count": 3,
"campaign_duration": 90,
"previous_projects_count": 5,
"previous_success_rate": 0.4,
"previous_pledged": 18745.33,
"previous_funding_goal": 23564.99
}
def predict_success(data, max_retries=3, retry_delay=10):
"""Send data to the API and get prediction results with retries"""
for attempt in range(max_retries):
try:
# Make the POST request to the API
print(f"Sending request to: {API_URL} (Attempt {attempt + 1}/{max_retries})")
response = requests.post(API_URL, json=data, timeout=60)
# Check if the request was successful
if response.status_code == 200:
return response.json()
else:
print(f"Error: {response.status_code}")
print(response.text)
if response.status_code == 500 and "Can't load tokenizer" in response.text:
print(f"The model might be downloading. Waiting {retry_delay} seconds before retry...")
time.sleep(retry_delay)
else:
# For other errors, don't retry
return None
except Exception as e:
print(f"Exception occurred: {str(e)}")
print(f"Waiting {retry_delay} seconds before retry...")
time.sleep(retry_delay)
return None
def display_results(results):
"""Display the prediction results in a user-friendly way"""
if not results:
print("No results to display.")
return
print("\n===== KICKSTARTER SUCCESS PREDICTION =====\n")
print(f"Success Probability: {results['success_probability']:.2%}")
print(f"Predicted Outcome: {results['predicted_outcome']}")
print("\n----- TOP INFLUENCING FACTORS -----")
# Get the top 5 factors by absolute magnitude
top_factors = sorted(
results['shap_values'].items(),
key=lambda x: abs(float(x[1])),
reverse=True
)[:5]
for factor, value in top_factors:
impact = "POSITIVE" if float(value) > 0 else "NEGATIVE"
print(f"{factor}: {value:.4f} ({impact})")
print("\n----- ALL SHAP VALUES -----")
pp = pprint.PrettyPrinter(indent=2)
pp.pprint(results['shap_values'])
# Display Longformer embedding information if available
if 'longformer_embedding' in results:
embedding = np.array(results['longformer_embedding'])
print("\n----- LONGFORMER EMBEDDING -----")
print(f"Embedding Shape: {embedding.shape if hasattr(embedding, 'shape') else len(embedding)}")
print(f"First 10 values: {embedding[:10]}")
# Calculate some basic statistics on the embedding
try:
embedding_np = np.array(embedding)
print(f"Mean: {np.mean(embedding_np):.4f}")
print(f"Std: {np.std(embedding_np):.4f}")
print(f"Min: {np.min(embedding_np):.4f}")
print(f"Max: {np.max(embedding_np):.4f}")
except Exception as e:
print(f"Error calculating embedding statistics: {str(e)}")
# Main execution
if __name__ == "__main__":
print("==== DIAGNOSTICS ====")
print("Testing connectivity from client machine...")
internet_ok = check_internet_connectivity()
repo_ok = check_model_repository()
debug_info = check_debug_endpoint(API_URL)
print("\n==== PREDICTION TEST ====")
if not internet_ok:
print("WARNING: Internet connectivity issues detected on client machine.")
if not repo_ok:
print("WARNING: Cannot access model repository from client machine.")
print("Sending prediction request...")
results = predict_success(campaign_data, max_retries=2, retry_delay=10)
display_results(results)