articles / app.py
andufkova's picture
topic discovery added
48032f9
raw
history blame
5.88 kB
import gradio as gr
import numpy as np
import pandas as pd
import pickle
import sklearn
import plotly.express as px
from sentence_transformers import SentenceTransformer
from sklearn.cluster import MiniBatchKMeans
from learn_multi_doc_model import Model
#css_code='body {background-image:url("https://picsum.photos/seed/picsum/200/300");} div.gradio-container {background: white;}, button#component-8{background-color: rgb(158,202,225);}'
css_code='button#component-8{background-color: rgb(158,202,225);}'
import __main__
setattr(__main__, "Model", Model)
categories = ["Censorship","Development","Digital Activism","Disaster","Economics & Business","Education","Environment","Governance","Health","History","Humanitarian Response","International Relations","Law","Media & Journalism","Migration & Immigration","Politics","Protest","Religion","Sport","Travel","War & Conflict","Technology + Science","Women & Gender + LGBTQ + Youth","Freedom of Speech + Human Rights","Literature + Arts & Culture"]
input_cvect_key_file = 'topic_discovery/cvects.key'
model_labse = SentenceTransformer('sentence-transformers/LaBSE')
with open('models/MLP_classifier_average_en.pkl', 'rb') as f:
classifier = pickle.load(f)
mul_model = None
with open('models/model_0.0001_100.pkl', 'rb') as f:
mul_model = pickle.load(f)
def get_embedding(text):
if text is None:
text = ""
return model_labse.encode(text)
def get_categories(y_pred):
indices = []
for idx, value in enumerate(y_pred):
if value == 1:
indices.append(idx)
cats = [categories[i] for i in indices]
return cats
def get_words(doc_emb):
# load countvectorizers
cvects = {}
vocab = {} # load vocabulary of words for each lang
with open(input_cvect_key_file, "r") as fpr:
for line in fpr:
#print(line)
lang, fpath = line.strip().split()
with open(fpath, "rb") as fpr:
#print(f"loading {fpath}")
cvects[lang] = pickle.load(fpr)
vocab[lang] = cvects[lang].get_feature_names()
#print(
# "Loaded CountVectorizer for lang",
# lang,
# "with vocab size:",
# len(vocab[lang]),
#)
topn = 10 # top N words per cluster
#print(vocab["en"])
#print("MODEL KEYS")
#print(mul_model.E.keys())
doc_emb = doc_emb.flatten()
words_dict = {}
for lang in mul_model.E.keys():
#print(lang, end=": ")
scores = mul_model.E[lang] @ (doc_emb).T
k_ixs = np.argsort(scores)[::-1][:topn].squeeze() # sort them in descending order and pick topn
tmp = []
for i in k_ixs:
#print(vocab[lang][i], end=", ")
tmp.append(vocab[lang][i])
words_dict[lang] = tmp
#print()
return words_dict
def generate_output(article):
paragraphs = article.split("\n")
embdds = []
for par in paragraphs:
embdds.append(get_embedding(par))
embedding = np.average(embdds, axis=0)
#y_pred = classifier.predict_proba(embedding.reshape(1, 768))
reshaped = embedding.reshape(1, 768)
#y_pred = classifier.predict(reshaped)
#y_pred = y_pred.flatten()
y_prob = classifier.predict_proba(reshaped)
y_prob = y_prob.reshape(len(categories),1)
y_pred = [1 if x >= 0.5 else 0 for x in y_prob]
classes = get_categories(y_pred)
if len(classes) > 1:
classes_string = ', '.join(classes)
elif len(classes) == 1:
classes_string = classes[0]
else:
classes_string = 'No category was found.'
data = pd.DataFrame()
data['Category'] = categories
data['Probability'] = y_prob
fig = px.bar(data, x='Probability', y='Category', orientation='h', height=600)#, title="Category probability")
fig.update_xaxes(range=[0, 1])
fig.update_layout(margin=dict(l=5, r=5, t=20, b=5)) #paper_bgcolor="LightSteelBlue")
fig.update_traces(marker_color='rgb(158,202,225)')
#print(f"LEN Y_PROB {len(y_prob)}")
#print(f"LEN CAT {len(categories)}")
words_dict = get_words(reshaped)
words_string = ""
for lang, w in words_dict.items():
words_string += f"{lang}: "
words_string += ', '.join(w)
words_string += "\n"
return (classes_string, fig, words_string)
# demo = gr.Interface(fn=generate_output,
# inputs=gr.Textbox(lines=6, placeholder="Insert text of the article here...", label="Article"),
# outputs=[gr.Textbox(lines=1, label="Category"), gr.Plot(label="Category probability"), gr.Textbox(lines=5, label="Topic discovery")],
# title="Article classification & topic discovery demo",
# flagging_options=["Incorrect"],
# theme=gr.themes.Base())
#css=css_code)
demo = gr.Blocks(css=css_code, theme=gr.themes.Base(), title="Article classification & topic discovery demo")
with demo:
with gr.Row():
my_title = gr.HTML("<h1 align='center'>Article classification & topic discovery demo</h1>")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(lines=22, placeholder="Insert text of the article here...", label="Article")
with gr.Row():
clear_button = gr.Button("Clear")
submit_button = gr.Button("Submit")
with gr.Column():
with gr.Tabs():
with gr.TabItem("Classification"):
category_text = gr.Textbox(lines=1, label="Category")
category_plot = gr.Plot()
with gr.TabItem("Topic discovery"):
topic_text = gr.Textbox(lines=22, label="The most representative words")
submit_button.click(generate_output, inputs=input_text, outputs=[category_text, category_plot, topic_text])
clear_button.click(lambda: None, None, input_text, queue=False)
demo.launch()