attention-rollout / BERT_explainability /RobertaForSequenceClassification.py
Martijn van Beers
try to make it work quick and dirty
2e1a3f8
raw
history blame
8.5 kB
from transformers import BertPreTrainedModel
from transformers.modeling_outputs import SequenceClassifierOutput
from transformers.utils import logging
from BERT_explainability.modules.layers_ours import *
from BERT_explainability.modules.BERT.BERT import BertModel
from torch.nn import CrossEntropyLoss, MSELoss
import torch.nn as nn
from typing import List, Any
import torch
from BERT_rationale_benchmark.models.model_utils import PaddedSequence
class BertForSequenceClassification(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModel(config)
self.dropout = Dropout(config.hidden_dropout_prob)
self.classifier = Linear(config.hidden_size, config.num_labels)
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss.
Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.num_labels == 1:
# We are doing regression
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def relprop(self, cam=None, **kwargs):
cam = self.classifier.relprop(cam, **kwargs)
cam = self.dropout.relprop(cam, **kwargs)
cam = self.bert.relprop(cam, **kwargs)
# print("conservation: ", cam.sum())
return cam
# this is the actual classifier we will be using
class BertClassifier(nn.Module):
"""Thin wrapper around BertForSequenceClassification"""
def __init__(self,
bert_dir: str,
pad_token_id: int,
cls_token_id: int,
sep_token_id: int,
num_labels: int,
max_length: int = 512,
use_half_precision=True):
super(BertClassifier, self).__init__()
bert = BertForSequenceClassification.from_pretrained(bert_dir, num_labels=num_labels)
if use_half_precision:
import apex
bert = bert.half()
self.bert = bert
self.pad_token_id = pad_token_id
self.cls_token_id = cls_token_id
self.sep_token_id = sep_token_id
self.max_length = max_length
def forward(self,
query: List[torch.tensor],
docids: List[Any],
document_batch: List[torch.tensor]):
assert len(query) == len(document_batch)
print(query)
# note about device management:
# since distributed training is enabled, the inputs to this module can be on *any* device (preferably cpu, since we wrap and unwrap the module)
# we want to keep these params on the input device (assuming CPU) for as long as possible for cheap memory access
target_device = next(self.parameters()).device
cls_token = torch.tensor([self.cls_token_id]).to(device=document_batch[0].device)
sep_token = torch.tensor([self.sep_token_id]).to(device=document_batch[0].device)
input_tensors = []
position_ids = []
for q, d in zip(query, document_batch):
if len(q) + len(d) + 2 > self.max_length:
d = d[:(self.max_length - len(q) - 2)]
input_tensors.append(torch.cat([cls_token, q, sep_token, d]))
position_ids.append(torch.tensor(list(range(0, len(q) + 1)) + list(range(0, len(d) + 1))))
bert_input = PaddedSequence.autopad(input_tensors, batch_first=True, padding_value=self.pad_token_id,
device=target_device)
positions = PaddedSequence.autopad(position_ids, batch_first=True, padding_value=0, device=target_device)
(classes,) = self.bert(bert_input.data,
attention_mask=bert_input.mask(on=0.0, off=float('-inf'), device=target_device),
position_ids=positions.data)
assert torch.all(classes == classes) # for nans
print(input_tensors[0])
print(self.relprop()[0])
return classes
def relprop(self, cam=None, **kwargs):
return self.bert.relprop(cam, **kwargs)
if __name__ == '__main__':
from transformers import BertTokenizer
import os
class Config:
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, num_labels,
hidden_dropout_prob):
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.num_labels = num_labels
self.hidden_dropout_prob = hidden_dropout_prob
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
x = tokenizer.encode_plus("In this movie the acting is great. The movie is perfect! [sep]",
add_special_tokens=True,
max_length=512,
return_token_type_ids=False,
return_attention_mask=True,
pad_to_max_length=True,
return_tensors='pt',
truncation=True)
print(x['input_ids'])
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
model_save_file = os.path.join('./BERT_explainability/output_bert/movies/classifier/', 'classifier.pt')
model.load_state_dict(torch.load(model_save_file))
# x = torch.randint(100, (2, 20))
# x = torch.tensor([[101, 2054, 2003, 1996, 15792, 1997, 2023, 3319, 1029, 102,
# 101, 4079, 102, 101, 6732, 102, 101, 2643, 102, 101,
# 2038, 102, 101, 1037, 102, 101, 2933, 102, 101, 2005,
# 102, 101, 2032, 102, 101, 1010, 102, 101, 1037, 102,
# 101, 3800, 102, 101, 2005, 102, 101, 2010, 102, 101,
# 2166, 102, 101, 1010, 102, 101, 1998, 102, 101, 2010,
# 102, 101, 4650, 102, 101, 1010, 102, 101, 2002, 102,
# 101, 2074, 102, 101, 2515, 102, 101, 1050, 102, 101,
# 1005, 102, 101, 1056, 102, 101, 2113, 102, 101, 2054,
# 102, 101, 1012, 102]])
# x.requires_grad_()
model.eval()
y = model(x['input_ids'], x['attention_mask'])
print(y)
cam, _ = model.relprop()
#print(cam.shape)
cam = cam.sum(-1)
#print(cam)