zyingt's picture
Upload 685 files
0d80816
raw
history blame
9.64 kB
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).
# ## Citations
# ```bibtex
# @inproceedings{yao2021wenet,
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
# booktitle={Proc. Interspeech},
# year={2021},
# address={Brno, Czech Republic },
# organization={IEEE}
# }
# @article{zhang2022wenet,
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
# journal={arXiv preprint arXiv:2203.15455},
# year={2022}
# }
#
import sys
import random
import math
import torchaudio
import torch
torchaudio.set_audio_backend("sox_io")
def db2amp(db):
return pow(10, db / 20)
def amp2db(amp):
return 20 * math.log10(amp)
def make_poly_distortion(conf):
"""Generate a db-domain ploynomial distortion function
f(x) = a * x^m * (1-x)^n + x
Args:
conf: a dict {'a': #int, 'm': #int, 'n': #int}
Returns:
The ploynomial function, which could be applied on
a float amplitude value
"""
a = conf["a"]
m = conf["m"]
n = conf["n"]
def poly_distortion(x):
abs_x = abs(x)
if abs_x < 0.000001:
x = x
else:
db_norm = amp2db(abs_x) / 100 + 1
if db_norm < 0:
db_norm = 0
db_norm = a * pow(db_norm, m) * pow((1 - db_norm), n) + db_norm
if db_norm > 1:
db_norm = 1
db = (db_norm - 1) * 100
amp = db2amp(db)
if amp >= 0.9997:
amp = 0.9997
if x > 0:
x = amp
else:
x = -amp
return x
return poly_distortion
def make_quad_distortion():
return make_poly_distortion({"a": 1, "m": 1, "n": 1})
# the amplitude are set to max for all non-zero point
def make_max_distortion(conf):
"""Generate a max distortion function
Args:
conf: a dict {'max_db': float }
'max_db': the maxium value.
Returns:
The max function, which could be applied on
a float amplitude value
"""
max_db = conf["max_db"]
if max_db:
max_amp = db2amp(max_db) # < 0.997
else:
max_amp = 0.997
def max_distortion(x):
if x > 0:
x = max_amp
elif x < 0:
x = -max_amp
else:
x = 0.0
return x
return max_distortion
def make_amp_mask(db_mask=None):
"""Get a amplitude domain mask from db domain mask
Args:
db_mask: Optional. A list of tuple. if None, using default value.
Returns:
A list of tuple. The amplitude domain mask
"""
if db_mask is None:
db_mask = [(-110, -95), (-90, -80), (-65, -60), (-50, -30), (-15, 0)]
amp_mask = [(db2amp(db[0]), db2amp(db[1])) for db in db_mask]
return amp_mask
default_mask = make_amp_mask()
def generate_amp_mask(mask_num):
"""Generate amplitude domain mask randomly in [-100db, 0db]
Args:
mask_num: the slot number of the mask
Returns:
A list of tuple. each tuple defines a slot.
e.g. [(-100, -80), (-65, -60), (-50, -30), (-15, 0)]
for #mask_num = 4
"""
a = [0] * 2 * mask_num
a[0] = 0
m = []
for i in range(1, 2 * mask_num):
a[i] = a[i - 1] + random.uniform(0.5, 1)
max_val = a[2 * mask_num - 1]
for i in range(0, mask_num):
l = ((a[2 * i] - max_val) / max_val) * 100
r = ((a[2 * i + 1] - max_val) / max_val) * 100
m.append((l, r))
return make_amp_mask(m)
def make_fence_distortion(conf):
"""Generate a fence distortion function
In this fence-like shape function, the values in mask slots are
set to maxium, while the values not in mask slots are set to 0.
Use seperated masks for Positive and negetive amplitude.
Args:
conf: a dict {'mask_number': int,'max_db': float }
'mask_number': the slot number in mask.
'max_db': the maxium value.
Returns:
The fence function, which could be applied on
a float amplitude value
"""
mask_number = conf["mask_number"]
max_db = conf["max_db"]
max_amp = db2amp(max_db) # 0.997
if mask_number <= 0:
positive_mask = default_mask
negative_mask = make_amp_mask([(-50, 0)])
else:
positive_mask = generate_amp_mask(mask_number)
negative_mask = generate_amp_mask(mask_number)
def fence_distortion(x):
is_in_mask = False
if x > 0:
for mask in positive_mask:
if x >= mask[0] and x <= mask[1]:
is_in_mask = True
return max_amp
if not is_in_mask:
return 0.0
elif x < 0:
abs_x = abs(x)
for mask in negative_mask:
if abs_x >= mask[0] and abs_x <= mask[1]:
is_in_mask = True
return max_amp
if not is_in_mask:
return 0.0
return x
return fence_distortion
#
def make_jag_distortion(conf):
"""Generate a jag distortion function
In this jag-like shape function, the values in mask slots are
not changed, while the values not in mask slots are set to 0.
Use seperated masks for Positive and negetive amplitude.
Args:
conf: a dict {'mask_number': #int}
'mask_number': the slot number in mask.
Returns:
The jag function,which could be applied on
a float amplitude value
"""
mask_number = conf["mask_number"]
if mask_number <= 0:
positive_mask = default_mask
negative_mask = make_amp_mask([(-50, 0)])
else:
positive_mask = generate_amp_mask(mask_number)
negative_mask = generate_amp_mask(mask_number)
def jag_distortion(x):
is_in_mask = False
if x > 0:
for mask in positive_mask:
if x >= mask[0] and x <= mask[1]:
is_in_mask = True
return x
if not is_in_mask:
return 0.0
elif x < 0:
abs_x = abs(x)
for mask in negative_mask:
if abs_x >= mask[0] and abs_x <= mask[1]:
is_in_mask = True
return x
if not is_in_mask:
return 0.0
return x
return jag_distortion
# gaining 20db means amp = amp * 10
# gaining -20db means amp = amp / 10
def make_gain_db(conf):
"""Generate a db domain gain function
Args:
conf: a dict {'db': #float}
'db': the gaining value
Returns:
The db gain function, which could be applied on
a float amplitude value
"""
db = conf["db"]
def gain_db(x):
return min(0.997, x * pow(10, db / 20))
return gain_db
def distort(x, func, rate=0.8):
"""Distort a waveform in sample point level
Args:
x: the origin wavefrom
func: the distort function
rate: sample point-level distort probability
Returns:
the distorted waveform
"""
for i in range(0, x.shape[1]):
a = random.uniform(0, 1)
if a < rate:
x[0][i] = func(float(x[0][i]))
return x
def distort_chain(x, funcs, rate=0.8):
for i in range(0, x.shape[1]):
a = random.uniform(0, 1)
if a < rate:
for func in funcs:
x[0][i] = func(float(x[0][i]))
return x
# x is numpy
def distort_wav_conf(x, distort_type, distort_conf, rate=0.1):
if distort_type == "gain_db":
gain_db = make_gain_db(distort_conf)
x = distort(x, gain_db)
elif distort_type == "max_distortion":
max_distortion = make_max_distortion(distort_conf)
x = distort(x, max_distortion, rate=rate)
elif distort_type == "fence_distortion":
fence_distortion = make_fence_distortion(distort_conf)
x = distort(x, fence_distortion, rate=rate)
elif distort_type == "jag_distortion":
jag_distortion = make_jag_distortion(distort_conf)
x = distort(x, jag_distortion, rate=rate)
elif distort_type == "poly_distortion":
poly_distortion = make_poly_distortion(distort_conf)
x = distort(x, poly_distortion, rate=rate)
elif distort_type == "quad_distortion":
quad_distortion = make_quad_distortion()
x = distort(x, quad_distortion, rate=rate)
elif distort_type == "none_distortion":
pass
else:
print("unsupport type")
return x
def distort_wav_conf_and_save(distort_type, distort_conf, rate, wav_in, wav_out):
x, sr = torchaudio.load(wav_in)
x = x.detach().numpy()
out = distort_wav_conf(x, distort_type, distort_conf, rate)
torchaudio.save(wav_out, torch.from_numpy(out), sr)
if __name__ == "__main__":
distort_type = sys.argv[1]
wav_in = sys.argv[2]
wav_out = sys.argv[3]
conf = None
rate = 0.1
if distort_type == "new_jag_distortion":
conf = {"mask_number": 4}
elif distort_type == "new_fence_distortion":
conf = {"mask_number": 1, "max_db": -30}
elif distort_type == "poly_distortion":
conf = {"a": 4, "m": 2, "n": 2}
distort_wav_conf_and_save(distort_type, conf, rate, wav_in, wav_out)