yuancwang
add app
9893813
|
raw
history blame
7.95 kB

Leveraging Content-based Features from Multiple Acoustic Models for Singing Voice Conversion

arXiv demo



This is the official implementation of the paper "Leveraging Content-based Features from Multiple Acoustic Models for Singing Voice Conversion" (NeurIPS 2023 Workshop on Machine Learning for Audio). Specially,

  • The muptile content features are from Whipser and ContentVec.
  • The acoustic model is based on Bidirectional Non-Causal Dilated CNN (called DiffWaveNetSVC in Amphion), which is similar to WaveNet, DiffWave, and DiffSVC.
  • The vocoder is BigVGAN architecture and we fine-tuned it in over 120 hours singing voice data.

There are four stages in total:

  1. Data preparation
  2. Features extraction
  3. Training
  4. Inference/conversion

NOTE: You need to run every command of this recipe in the Amphion root path:

cd Amphion

1. Data Preparation

Dataset Download

By default, we utilize the five datasets for training: M4Singer, Opencpop, OpenSinger, SVCC, and VCTK. How to download them is detailed here.

Configuration

Specify the dataset paths in exp_config.json. Note that you can change the dataset list to use your preferred datasets.

    "dataset": [
        "m4singer",
        "opencpop",
        "opensinger",
        "svcc",
        "vctk"
    ],
    "dataset_path": {
        // TODO: Fill in your dataset path
        "m4singer": "[M4Singer dataset path]",
        "opencpop": "[Opencpop dataset path]",
        "opensinger": "[OpenSinger dataset path]",
        "svcc": "[SVCC dataset path]",
        "vctk": "[VCTK dataset path]"
    },

2. Features Extraction

Content-based Pretrained Models Download

By default, we utilize the Whisper and ContentVec to extract content features. How to download them is detailed here.

Configuration

Specify the dataset path and the output path for saving the processed data and the training model in exp_config.json:

    // TODO: Fill in the output log path. The default value is "Amphion/ckpts/svc"
    "log_dir": "ckpts/svc",
    "preprocess": {
        // TODO: Fill in the output data path. The default value is "Amphion/data"
        "processed_dir": "data",
        ...
    },

Run

Run the run.sh as the preproces stage (set --stage 1).

sh egs/svc/MultipleContentsSVC/run.sh --stage 1

NOTE: The CUDA_VISIBLE_DEVICES is set as "0" in default. You can change it when running run.sh by specifying such as --gpu "1".

3. Training

Configuration

We provide the default hyparameters in the exp_config.json. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines.

"train": {
        "batch_size": 32,
        ...
        "adamw": {
            "lr": 2.0e-4
        },
        ...
    }

Run

Run the run.sh as the training stage (set --stage 2). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in Amphion/ckpts/svc/[YourExptName].

sh egs/svc/MultipleContentsSVC/run.sh --stage 2 --name [YourExptName]

NOTE: The CUDA_VISIBLE_DEVICES is set as "0" in default. You can change it when running run.sh by specifying such as --gpu "0,1,2,3".

4. Inference/Conversion

Pretrained Vocoder Download

We fine-tune the official BigVGAN pretrained model with over 120 hours singing voice data. The benifits of fine-tuning has been investigated in our paper (see this demo page). The final pretrained singing voice vocoder is released here (called Amphion Singing BigVGAN).

Run

For inference/conversion, you need to specify the following configurations when running run.sh:

Parameters Description Example
--infer_expt_dir The experimental directory which contains checkpoint Amphion/ckpts/svc/[YourExptName]
--infer_output_dir The output directory to save inferred audios. Amphion/ckpts/svc/[YourExptName]/result
--infer_source_file or --infer_source_audio_dir The inference source (can be a json file or a dir). The infer_source_file could be Amphion/data/[YourDataset]/test.json, and the infer_source_audio_dir is a folder which includes several audio files (*.wav, *.mp3 or *.flac).
--infer_target_speaker The target speaker you want to convert into. You can refer to Amphion/ckpts/svc/[YourExptName]/singers.json to choose a trained speaker. For opencpop dataset, the speaker name would be opencpop_female1.
--infer_key_shift How many semitones you want to transpose. "autoshfit" (by default), 3, -3, etc.

For example, if you want to make opencpop_female1 sing the songs in the [Your Audios Folder], just run:

sh egs/svc/MultipleContentsSVC/run.sh --stage 3 --gpu "0" \
    --infer_expt_dir Amphion/ckpts/svc/[YourExptName] \
    --infer_output_dir Amphion/ckpts/svc/[YourExptName]/result \
    --infer_source_audio_dir [Your Audios Folder] \
    --infer_target_speaker "opencpop_female1" \
    --infer_key_shift "autoshift"

Citations

@article{zhang2023leveraging,
  title={Leveraging Content-based Features from Multiple Acoustic Models for Singing Voice Conversion},
  author={Zhang, Xueyao and Gu, Yicheng and Chen, Haopeng and Fang, Zihao and Zou, Lexiao and Xue, Liumeng and Wu, Zhizheng},
  journal={Machine Learning for Audio Worshop, NeurIPS 2023},
  year={2023}
}