sjc / ncsn /ema.py
amankishore's picture
Updated app.py
7a11626
raw
history blame
1.7 kB
import copy
import torch.nn as nn
class EMAHelper(object):
def __init__(self, mu=0.999):
self.mu = mu
self.shadow = {}
def register(self, module):
if isinstance(module, nn.DataParallel):
module = module.module
for name, param in module.named_parameters():
if param.requires_grad:
self.shadow[name] = param.data.clone()
def update(self, module):
if isinstance(module, nn.DataParallel):
module = module.module
for name, param in module.named_parameters():
if param.requires_grad:
self.shadow[name].data = (1. - self.mu) * param.data + self.mu * self.shadow[name].data
def ema(self, module):
if isinstance(module, nn.DataParallel):
module = module.module
for name, param in module.named_parameters():
if param.requires_grad:
param.data.copy_(self.shadow[name].data)
def ema_copy(self, module):
if isinstance(module, nn.DataParallel):
inner_module = module.module
module_copy = type(inner_module)(inner_module.config).to(inner_module.config.device)
module_copy.load_state_dict(inner_module.state_dict())
module_copy = nn.DataParallel(module_copy)
else:
module_copy = type(module)(module.config).to(module.config.device)
module_copy.load_state_dict(module.state_dict())
# module_copy = copy.deepcopy(module)
self.ema(module_copy)
return module_copy
def state_dict(self):
return self.shadow
def load_state_dict(self, state_dict):
self.shadow = state_dict