SonicVerse / src /sonicverse /scripts /evaluate_model_mullama.py
annabeth97c's picture
Initial commit
12f2e48 verified
from dataclasses import dataclass, field
import logging
from flask import Flask, request, jsonify
import transformers
import torch
from datasets import load_from_disk
from multi_token.model_utils import MultiTaskType
from multi_token.training import ModelArguments
from multi_token.inference import load_trained_lora_model
from multi_token.data_tools import encode_chat
import evaluate
import random
import bert_score
from tqdm import tqdm
from rouge_score import rouge_scorer
from nltk.translate.bleu_score import sentence_bleu
from nltk.translate.meteor_score import meteor_score as meteor_scorer
from nltk.tokenize import wordpunct_tokenize
import json
from bert_score import score
from tqdm.auto import tqdm
import yaml
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
PRETRAIN_PHRASES_OLD = [
"Describe the audio in detail"
]
PRETRAIN_PHRASES = [
"What is happening in the given music <sound>?",
"Describe the sound. <sound>",
"Describe the music. <sound>",
"<sound> Provide a description of the music.",
"<sound> Provide a description of the sound.",
"Can you interpret <sound>?",
"Please explain what's happening in <sound>",
"What does <sound> represent?",
"Could you describe <sound> for me?",
"What's the content of <sound>?",
"Can you depict <sound>?",
"What is <sound>?",
"In the music clip, <sound>, what is happening?",
"Provide a description of the music. <sound>",
"Provide a description of the sound. <sound>",
"Provide a caption for the sound. <sound>",
"Provide a caption for the music. <sound>",
]
random.seed(1234)
@dataclass
class ServeArguments(ModelArguments):
port: int = field(default=8080)
host: str = field(default="0.0.0.0")
load_bits: int = field(default=16)
max_new_tokens: int = field(default=128)
temperature: float = field(default=0.01)
def generate(input_json):
encoded_dict = encode_chat(input_json, tokenizer, model.modalities)
with torch.inference_mode():
output_ids = model.generate(
input_ids=encoded_dict["input_ids"].unsqueeze(0).to(model.device),
max_new_tokens=serve_args.max_new_tokens,
use_cache=True,
do_sample=True,
temperature=serve_args.temperature,
modality_inputs={
m.name: [encoded_dict[m.name]] for m in model.modalities
},
)
outputs = tokenizer.decode(
output_ids[0, encoded_dict["input_ids"].shape[0]:],
skip_special_tokens=True,
).strip()
return {"output": outputs}
def evaluate(candidates, mult_reference):
rouge_score, bleu_score, bleu4_score, meteor_score = 0, 0, 0, 0
for ref, cand in tqdm(zip(mult_reference, candidates), total=len(mult_reference)):
rouge_score += scorer.score(ref, cand)['rougeL'].recall
cand_split = wordpunct_tokenize(cand)
ref_split = wordpunct_tokenize(ref)
bleu4_score += sentence_bleu([ref], cand, weights=(0.0, 0.0, 0.0, 1.0))
bleu_score += sentence_bleu([ref], cand)
meteor_score += meteor_scorer([ref_split], cand_split)
rouge_score, bleu_score, bleu4_score, meteor_score = rouge_score / (len(candidates)), bleu_score / (len(candidates)), bleu4_score / (len(candidates)), meteor_score / (len(candidates))
P, R, F1 = score(candidates, mult_reference, lang="en", verbose=True)
bert_score = R.mean().item()
#print(f"Model: {model_name}")
print(f"BLEU Score: {bleu_score}")
print(f"BLEU-4 Score: {bleu4_score}")
print(f"METEOR Score: {meteor_score}")
print(f"ROUGE Score: {rouge_score}")
print(f"BERT Score: {bert_score}")
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
parser = transformers.HfArgumentParser((ServeArguments,))
serve_args, _ = parser.parse_args_into_dataclasses(return_remaining_strings=True)
dataset_path = "/data/musicbench_multitoken_official_split/val"
ds = load_from_disk(dataset_path)
shuffled_ds = ds.shuffle(seed=1234)
model, tokenizer = load_trained_lora_model(
model_name_or_path=serve_args.model_name_or_path,
model_lora_path=serve_args.model_lora_path,
load_bits=serve_args.load_bits,
use_multi_task=MultiTaskType(serve_args.use_multi_task),
tasks_config=serve_args.tasks_config
)
predictions = []
references = []
content_phrase = random.choice(PRETRAIN_PHRASES)
# for data_point_id in range(len(ds)):
print("len(ds)", len(ds))
for data_point_id in tqdm(range(100)):
# for data_point_id in tqdm(range(6831)):
data_point = shuffled_ds[data_point_id]
input_json = {"messages": [{"role": "user", "content": content_phrase}], "sounds": data_point["sounds"]}
output_json = generate(input_json)
# print("Prediction ", output_json["output"])
# print("Reference ", data_point["messages"][1]["content"])
# print()
# print()
predictions.append(output_json["output"])
references.append(data_point["messages"][1]["content"])
pairs = {"predictions": predictions, "references": references}
evaluate(predictions, references)
# with open('/experiments/captioning/mert_tasks_separate_backbone_train_001_ft/checkpoint_1985_test/val_2.yaml', 'w') as file:
# yaml.dump(pairs, file, default_flow_style=False)
# Load evaluation metrics
# bleu = evaluate.load("bleu")
# meteor = evaluate.load("meteor")
# rouge = evaluate.load("rouge")
# Compute BLEU scores
# bleu_results = bleu.compute(predictions=predictions, references=references, max_order=4)
# print(bleu_results)
#bleu_score = sum(bleu_results[f"bleu{i}"] for i in range(1, 5)) / 4
# Compute METEOR score
# meteor_results = meteor.compute(predictions=predictions, references=references)
# meteor_score = meteor_results["meteor"]
# Compute ROUGE-L score
# rouge_results = rouge.compute(predictions=predictions, references=references, rouge_types=["rougeL"])
# rouge_l_score = rouge_results["rougeL"].mid.fmeasure
# print(rouge_results)
# Compute BERT-Score
# P, R, F1 = bert_score.score(predictions, references, lang="en", rescale_with_baseline=True)
# bert_score_f1 = F1.mean().item()
# Print results
#print(f"BLEU Score: {bleu_score}")
# print(f"METEOR Score: {meteor_score}")
# print(f"ROUGE-L Score: {rouge_l_score}")
# print(f"BERT-Score F1: {bert_score_f1}")