SonicVerse / src /sonicverse /scripts /document_build_finetune_dataset.py
annabeth97c's picture
Initial commit
12f2e48 verified
from typing import List
import argparse
import re
import glob
import json
from datasets import load_dataset
from datasets import Dataset
from multi_token.constants import ROLE_ASSISTANT, ROLE_USER
from multi_token.modalities.document_gte import (
split_text_into_documents,
)
TEMP_TOKEN = "<<<TEMP-TOKEN>>>"
# regex, doc, prompt
LONG_ALPACA_REGEXES = [
(
r"Below is a paper. Memorize the paper and answer my question after the paper.\n The paper begins. \n ([\s\S]+) \n Now the paper ends. \n([\s\S]+)",
lambda m: m.group(1),
lambda m: f"Read the paper {TEMP_TOKEN}. {m.group(2)}",
),
(
r"Below is a paper. Memorize the material and answer my question after the paper.\n([\s\S]+)\n Now the material ends. ([\s\S]+)",
lambda m: m.group(1),
lambda m: f"Read the paper {TEMP_TOKEN}. {m.group(2)}",
),
(
r"There are two papers. Memorize them and answer my question after the paper.\n The first paper begins. \n ([\s\S]+) Now the second paper ends.([\s\S]+)",
lambda m: m.group(1),
lambda m: f"Read the papers {TEMP_TOKEN}. {m.group(2)}",
),
(
r"Below is some paragraphs in the book, ([\s\S]+?). Memorize the content and answer my question after the book.\n([\s\S]+) \n Now the material ends.([\s\S]+)",
lambda m: m.group(2),
lambda m: f"Read the book {m.group(1)} {TEMP_TOKEN}. {m.group(3)}",
),
]
# regex, doc, prompt, answer
LONG_DATA_REGEXES = [
(
r"Write a high-quality answer for the given question using only the provided search results \(some of which might be irrelevant\).([\s\S]+)Question: ([\s\S]+)Answer: ([\s\S]+)\nLong Answer: ([\s\S]+)",
lambda m: m.group(1).strip(),
lambda m: f"Write a high-quality answer for the given question using only the provided search results {TEMP_TOKEN}. {m.group(2).strip()}",
lambda m: m.group(4).strip(),
),
(
r"([\s\S]+)\nQ: ([\s\S]+)\nA: ([\s\S]+)",
lambda m: m.group(1).strip(),
lambda m: f"Read the following book {TEMP_TOKEN}. {m.group(2).strip()}",
lambda m: m.group(3).strip(),
),
]
def _write_long_alpaca_convo(row, max_document_chunks) -> List:
doc_text = None
prompt = None
for regex, get_doc, get_prompt in LONG_ALPACA_REGEXES:
match = re.match(regex, row["instruction"])
if match:
doc_text = get_doc(match)
prompt = get_prompt(match).replace("Question: ", "")
break
if doc_text is None and row["input"]:
doc_text = row["input"]
prompt = row["instruction"] + f" {TEMP_TOKEN}"
if doc_text is None:
raise ValueError("No document found")
docs = split_text_into_documents(doc_text)
if len(docs) > max_document_chunks:
raise ValueError("Document too long")
example = {
"id": "longalpaca-" + str(hash(row["instruction"])),
"documents": docs,
}
example["messages"] = [
{
"role": ROLE_USER,
"content": prompt.replace(TEMP_TOKEN, "<document>" * len(docs)),
},
{
"role": ROLE_ASSISTANT,
"content": row["output"].replace("Answer: ", ""),
},
]
return example
def _write_long_data_collections_convo(row, max_document_chunks) -> List:
doc_text = None
prompt = None
answer = None
for regex, get_doc, get_prompt, get_answer in LONG_DATA_REGEXES:
match = re.match(regex, row["text"])
if match:
doc_text = get_doc(match)
prompt = get_prompt(match)
answer = get_answer(match).replace(" .", ".")
break
if not doc_text or not prompt or not answer:
raise ValueError("No document found")
docs = split_text_into_documents(doc_text)
if len(docs) > max_document_chunks:
raise ValueError("Document too long")
example = {
"id": "longdatacollection-" + str(hash(row["text"])),
"documents": docs,
}
example["messages"] = [
{
"role": ROLE_USER,
"content": prompt.replace(TEMP_TOKEN, "<document>" * len(docs)),
},
{
"role": ROLE_ASSISTANT,
"content": answer,
},
]
return example
def main(args):
long_alpaca = load_dataset(args.long_alpaca_path, "train")["train"]
def gen():
for row in long_alpaca:
try:
yield _write_long_alpaca_convo(row, args.max_document_chunks)
except ValueError:
continue
for long_collection_fn in glob.iglob(args.long_collections_glob):
with open(long_collection_fn) as f:
for line in f:
row = json.loads(line)
try:
yield _write_long_data_collections_convo(
row, args.max_document_chunks
)
except ValueError:
continue
ds = Dataset.from_generator(gen)
ds = ds.shuffle(seed=42)
ds.save_to_disk(args.output_folder)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--long_alpaca_path", type=str, default="Yukang/LongAlpaca-12k")
parser.add_argument("--long_collections_glob", type=str)
parser.add_argument("-o", "--output_folder", type=str)
parser.add_argument("-c", "--max_document_chunks", type=int, default=256)
args = parser.parse_args()
main(args)