Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,22 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
3 |
|
4 |
# Load model
|
5 |
-
model = AutoModelForSequenceClassification.from_pretrained("
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
7 |
|
8 |
def predict(premise, hypothesis):
|
9 |
-
# Tokenize and predict
|
10 |
inputs = tokenizer(premise, hypothesis, return_tensors="pt", truncation=True)
|
11 |
outputs = model(**inputs)
|
12 |
prediction = outputs.logits.softmax(-1)[0]
|
13 |
|
14 |
-
# Return results
|
15 |
return {
|
16 |
"Entailment": float(prediction[0]),
|
17 |
"Neutral": float(prediction[1]),
|
18 |
"Contradiction": float(prediction[2])
|
19 |
}
|
20 |
|
21 |
-
# Create interface
|
22 |
demo = gr.Interface(
|
23 |
fn=predict,
|
24 |
inputs=[
|
@@ -26,7 +24,7 @@ demo = gr.Interface(
|
|
26 |
gr.Textbox(label="Hypothesis")
|
27 |
],
|
28 |
outputs=gr.Label(),
|
29 |
-
title="
|
30 |
examples=[
|
31 |
["The cat is sleeping.", "The cat is awake."],
|
32 |
["It's raining.", "The ground is wet."]
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
import torch
|
4 |
|
5 |
# Load model
|
6 |
+
model = AutoModelForSequenceClassification.from_pretrained("nli_model")
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("nli_model")
|
8 |
|
9 |
def predict(premise, hypothesis):
|
|
|
10 |
inputs = tokenizer(premise, hypothesis, return_tensors="pt", truncation=True)
|
11 |
outputs = model(**inputs)
|
12 |
prediction = outputs.logits.softmax(-1)[0]
|
13 |
|
|
|
14 |
return {
|
15 |
"Entailment": float(prediction[0]),
|
16 |
"Neutral": float(prediction[1]),
|
17 |
"Contradiction": float(prediction[2])
|
18 |
}
|
19 |
|
|
|
20 |
demo = gr.Interface(
|
21 |
fn=predict,
|
22 |
inputs=[
|
|
|
24 |
gr.Textbox(label="Hypothesis")
|
25 |
],
|
26 |
outputs=gr.Label(),
|
27 |
+
title="Natural Language Inference",
|
28 |
examples=[
|
29 |
["The cat is sleeping.", "The cat is awake."],
|
30 |
["It's raining.", "The ground is wet."]
|