alperugurcan commited on
Commit
012de1c
1 Parent(s): 80edd46

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -9
app.py CHANGED
@@ -1,23 +1,36 @@
1
  import gradio as gr
2
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
3
 
4
- model_name = "alperugurcan/Contradictory"
5
- tokenizer = AutoTokenizer.from_pretrained(model_name)
6
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
7
 
8
  def predict(premise, hypothesis):
 
9
  inputs = tokenizer(premise, hypothesis, return_tensors="pt", truncation=True)
10
  outputs = model(**inputs)
11
  prediction = outputs.logits.softmax(-1)[0]
12
- return {"Entailment": prediction[0].item(),
13
- "Neutral": prediction[1].item(),
14
- "Contradiction": prediction[2].item()}
 
 
 
 
15
 
 
16
  demo = gr.Interface(
17
  fn=predict,
18
- inputs=["text", "text"],
19
- outputs="label",
20
- title="NLI Classifier"
 
 
 
 
 
 
 
21
  )
22
 
23
  demo.launch()
 
1
  import gradio as gr
2
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
3
 
4
+ # Load model
5
+ model = AutoModelForSequenceClassification.from_pretrained("alperugurcan/Contradictory")
6
+ tokenizer = AutoTokenizer.from_pretrained("alperugurcan/Contradictory")
7
 
8
  def predict(premise, hypothesis):
9
+ # Tokenize and predict
10
  inputs = tokenizer(premise, hypothesis, return_tensors="pt", truncation=True)
11
  outputs = model(**inputs)
12
  prediction = outputs.logits.softmax(-1)[0]
13
+
14
+ # Return results
15
+ return {
16
+ "Entailment": float(prediction[0]),
17
+ "Neutral": float(prediction[1]),
18
+ "Contradiction": float(prediction[2])
19
+ }
20
 
21
+ # Create interface
22
  demo = gr.Interface(
23
  fn=predict,
24
+ inputs=[
25
+ gr.Textbox(label="Premise"),
26
+ gr.Textbox(label="Hypothesis")
27
+ ],
28
+ outputs=gr.Label(),
29
+ title="NLI Classifier",
30
+ examples=[
31
+ ["The cat is sleeping.", "The cat is awake."],
32
+ ["It's raining.", "The ground is wet."]
33
+ ]
34
  )
35
 
36
  demo.launch()