Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
import torch | |
# Load model - xlm-roberta-base'i doğrudan kullanalım | |
model = AutoModelForSequenceClassification.from_pretrained("xlm-roberta-base", num_labels=3) | |
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base") | |
def predict(premise, hypothesis): | |
inputs = tokenizer(premise, hypothesis, return_tensors="pt", truncation=True) | |
outputs = model(**inputs) | |
prediction = outputs.logits.softmax(-1)[0] | |
return { | |
"Entailment": float(prediction[0]), | |
"Neutral": float(prediction[1]), | |
"Contradiction": float(prediction[2]) | |
} | |
demo = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Textbox(label="Premise"), | |
gr.Textbox(label="Hypothesis") | |
], | |
outputs=gr.Label(), | |
title="Natural Language Inference", | |
examples=[ | |
["The cat is sleeping.", "The cat is awake."], | |
["It's raining.", "The ground is wet."] | |
] | |
) | |
demo.launch() |