import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch # Load model - xlm-roberta-base'i doğrudan kullanalım model = AutoModelForSequenceClassification.from_pretrained("xlm-roberta-base", num_labels=3) tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base") def predict(premise, hypothesis): inputs = tokenizer(premise, hypothesis, return_tensors="pt", truncation=True) outputs = model(**inputs) prediction = outputs.logits.softmax(-1)[0] return { "Entailment": float(prediction[0]), "Neutral": float(prediction[1]), "Contradiction": float(prediction[2]) } demo = gr.Interface( fn=predict, inputs=[ gr.Textbox(label="Premise"), gr.Textbox(label="Hypothesis") ], outputs=gr.Label(), title="Natural Language Inference", examples=[ ["The cat is sleeping.", "The cat is awake."], ["It's raining.", "The ground is wet."] ] ) demo.launch()