catotron-vc / app.py
alp's picture
Revert back 24h (wrong repo commit)
5724559 verified
import gradio as gr
import tempfile
from TTS.api import TTS
from huggingface_hub import hf_hub_download
import torch
CUDA = torch.cuda.is_available()
REPO_ID = "collectivat/catotron-ona"
VOICE_CONVERSION_MODELS = {
'freevc24': 'voice_conversion_models/multilingual/vctk/freevc24',
'openvoice_v1': 'voice_conversion_models/multilingual/multi-dataset/openvoice_v1',
'openvoice_v2': 'voice_conversion_models/multilingual/multi-dataset/openvoice_v2',
}
my_title = "Catotron Text-to-Speech with Voice Conversion"
my_description = "This space allows speaker conversion on Fast Speech based 🐸 [Catotron](https://huggingface.co/collectivat/catotron-ona)."
my_examples = [
["Catotron, síntesi de la parla obert i lliure en català.", True, None, 'freevc24'],
["Leonor Ferrer Girabau va ser una delineant, mestra i activista barcelonina, nascuda al carrer actual de la Concòrdia del Poble-sec, que es va convertir en la primera dona a obtenir el títol de delineant a Catalunya i a l'estat.", True, None, 'freevc24'],
["S'espera un dia anticiclònic amb temperatures suaus i vent fluix.", False, None, 'freevc24']
]
my_inputs = [
gr.Textbox(lines=5, label="Input Text"),
gr.Checkbox(label="Split Sentences", value=False),
gr.Audio(type="filepath", label="Speaker audio for voice cloning (optional)"),
gr.Dropdown(label="Voice Conversion Model", choices=list(VOICE_CONVERSION_MODELS.keys())),
]
my_outputs = gr.Audio(type="filepath", label="Output Audio", autoplay=True)
best_model_path = hf_hub_download(repo_id=REPO_ID, filename="fast-speech_best_model.pth")
config_path = hf_hub_download(repo_id=REPO_ID, filename="fast-speech_config.json")
vocoder_model = hf_hub_download(repo_id=REPO_ID, filename="ljspeech--hifigan_v2_model_file.pth")
vocoder_config = hf_hub_download(repo_id=REPO_ID, filename="ljspeech--hifigan_v2_config.json")
api = TTS(model_path=best_model_path, config_path=config_path, vocoder_path=vocoder_model, vocoder_config_path=vocoder_config).to("cuda" if CUDA else "cpu")
# pre-download voice conversion models
for model in VOICE_CONVERSION_MODELS.values():
api.load_vc_model_by_name(model, gpu=CUDA)
def tts(text: str, split_sentences: bool = False, speaker_wav: str = None, voice_cv_model: str = 'freevc24'):
# replace oov characters
text = text.replace("\n", ". ")
text = text.replace("(", ",")
text = text.replace(")", ",")
text = text.replace(";", ",")
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
if speaker_wav:
api.load_vc_model_by_name(VOICE_CONVERSION_MODELS[voice_cv_model], gpu=CUDA)
api.tts_with_vc_to_file(text, speaker_wav=speaker_wav, file_path=fp.name, split_sentences=split_sentences)
else:
api.tts_to_file(text, file_path=fp.name, split_sentences=split_sentences)
return fp.name
iface = gr.Interface(
fn=tts,
inputs=my_inputs,
outputs=my_outputs,
title=my_title,
description=my_description,
examples=my_examples,
cache_examples=True
)
iface.launch()