alp commited on
Commit
5724559
verified
1 Parent(s): 85ca7d5

Revert back 24h (wrong repo commit)

Browse files
Files changed (1) hide show
  1. app.py +16 -25
app.py CHANGED
@@ -6,7 +6,7 @@ import torch
6
 
7
  CUDA = torch.cuda.is_available()
8
 
9
- REPO_ID = "projecte-aina/tts-ca-coqui-vits-multispeaker"
10
 
11
  VOICE_CONVERSION_MODELS = {
12
  'freevc24': 'voice_conversion_models/multilingual/vctk/freevc24',
@@ -14,26 +14,17 @@ VOICE_CONVERSION_MODELS = {
14
  'openvoice_v2': 'voice_conversion_models/multilingual/multi-dataset/openvoice_v2',
15
  }
16
 
17
- my_title = "Catalan VITS Multi-Speaker TTS"
18
- my_description = "Model multilocutor en catal脿 basat en VITS, entrenat per Projecte AINA. Amb conversi贸 de veu!"
19
-
20
- # Load speakers from local speakers.pth
21
- speakers_dict = torch.load('speakers.pth', map_location='cpu')
22
- SPEAKER_IDS = list(speakers_dict.keys())
23
-
24
- # Create mapping: "Speaker 1" -> actual hash ID
25
- SPEAKER_CHOICES = [f"Speaker {i+1}" for i in range(len(SPEAKER_IDS))]
26
- SPEAKER_MAP = {f"Speaker {i+1}": SPEAKER_IDS[i] for i in range(len(SPEAKER_IDS))}
27
 
28
  my_examples = [
29
- ["Bon dia! Com esteu avui?", "Speaker 1", True, None, 'freevc24'],
30
- ["Catalunya 茅s un pa铆s ric en cultura i tradicions.", "Speaker 1", True, None, 'freevc24'],
31
- ["La intel路lig猫ncia artificial est脿 transformant el m贸n.", "Speaker 1", False, None, 'freevc24']
32
  ]
33
 
34
  my_inputs = [
35
- gr.Textbox(lines=5, label="Text en catal脿"),
36
- gr.Dropdown(label="Speaker", choices=SPEAKER_CHOICES, value="Speaker 1"),
37
  gr.Checkbox(label="Split Sentences", value=False),
38
  gr.Audio(type="filepath", label="Speaker audio for voice cloning (optional)"),
39
  gr.Dropdown(label="Voice Conversion Model", choices=list(VOICE_CONVERSION_MODELS.keys())),
@@ -41,19 +32,19 @@ my_inputs = [
41
 
42
  my_outputs = gr.Audio(type="filepath", label="Output Audio", autoplay=True)
43
 
44
- # Download model from HF
45
- best_model_path = hf_hub_download(repo_id=REPO_ID, filename="model/best_model.pth")
 
 
46
 
47
- api = TTS(model_path=best_model_path, config_path="config.json").to("cuda" if CUDA else "cpu")
48
 
49
  # pre-download voice conversion models
50
  for model in VOICE_CONVERSION_MODELS.values():
51
  api.load_vc_model_by_name(model, gpu=CUDA)
52
 
53
- def tts(text: str, speaker_name: str, split_sentences: bool = False, speaker_wav: str = None, voice_cv_model: str = 'freevc24'):
54
- # Map "Speaker 1" to actual hash ID
55
- speaker_id = SPEAKER_MAP[speaker_name]
56
-
57
  text = text.replace("\n", ". ")
58
  text = text.replace("(", ",")
59
  text = text.replace(")", ",")
@@ -62,9 +53,9 @@ def tts(text: str, speaker_name: str, split_sentences: bool = False, speaker_wav
62
  with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
63
  if speaker_wav:
64
  api.load_vc_model_by_name(VOICE_CONVERSION_MODELS[voice_cv_model], gpu=CUDA)
65
- api.tts_with_vc_to_file(text, speaker_wav=speaker_wav, file_path=fp.name, split_sentences=split_sentences, speaker=speaker_id)
66
  else:
67
- api.tts_to_file(text, file_path=fp.name, split_sentences=split_sentences, speaker=speaker_id)
68
 
69
  return fp.name
70
 
 
6
 
7
  CUDA = torch.cuda.is_available()
8
 
9
+ REPO_ID = "collectivat/catotron-ona"
10
 
11
  VOICE_CONVERSION_MODELS = {
12
  'freevc24': 'voice_conversion_models/multilingual/vctk/freevc24',
 
14
  'openvoice_v2': 'voice_conversion_models/multilingual/multi-dataset/openvoice_v2',
15
  }
16
 
17
+ my_title = "Catotron Text-to-Speech with Voice Conversion"
18
+ my_description = "This space allows speaker conversion on Fast Speech based 馃惛 [Catotron](https://huggingface.co/collectivat/catotron-ona)."
 
 
 
 
 
 
 
 
19
 
20
  my_examples = [
21
+ ["Catotron, s铆ntesi de la parla obert i lliure en catal脿.", True, None, 'freevc24'],
22
+ ["Leonor Ferrer Girabau va ser una delineant, mestra i activista barcelonina, nascuda al carrer actual de la Conc貌rdia del Poble-sec, que es va convertir en la primera dona a obtenir el t铆tol de delineant a Catalunya i a l'estat.", True, None, 'freevc24'],
23
+ ["S'espera un dia anticicl貌nic amb temperatures suaus i vent fluix.", False, None, 'freevc24']
24
  ]
25
 
26
  my_inputs = [
27
+ gr.Textbox(lines=5, label="Input Text"),
 
28
  gr.Checkbox(label="Split Sentences", value=False),
29
  gr.Audio(type="filepath", label="Speaker audio for voice cloning (optional)"),
30
  gr.Dropdown(label="Voice Conversion Model", choices=list(VOICE_CONVERSION_MODELS.keys())),
 
32
 
33
  my_outputs = gr.Audio(type="filepath", label="Output Audio", autoplay=True)
34
 
35
+ best_model_path = hf_hub_download(repo_id=REPO_ID, filename="fast-speech_best_model.pth")
36
+ config_path = hf_hub_download(repo_id=REPO_ID, filename="fast-speech_config.json")
37
+ vocoder_model = hf_hub_download(repo_id=REPO_ID, filename="ljspeech--hifigan_v2_model_file.pth")
38
+ vocoder_config = hf_hub_download(repo_id=REPO_ID, filename="ljspeech--hifigan_v2_config.json")
39
 
40
+ api = TTS(model_path=best_model_path, config_path=config_path, vocoder_path=vocoder_model, vocoder_config_path=vocoder_config).to("cuda" if CUDA else "cpu")
41
 
42
  # pre-download voice conversion models
43
  for model in VOICE_CONVERSION_MODELS.values():
44
  api.load_vc_model_by_name(model, gpu=CUDA)
45
 
46
+ def tts(text: str, split_sentences: bool = False, speaker_wav: str = None, voice_cv_model: str = 'freevc24'):
47
+ # replace oov characters
 
 
48
  text = text.replace("\n", ". ")
49
  text = text.replace("(", ",")
50
  text = text.replace(")", ",")
 
53
  with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
54
  if speaker_wav:
55
  api.load_vc_model_by_name(VOICE_CONVERSION_MODELS[voice_cv_model], gpu=CUDA)
56
+ api.tts_with_vc_to_file(text, speaker_wav=speaker_wav, file_path=fp.name, split_sentences=split_sentences)
57
  else:
58
+ api.tts_to_file(text, file_path=fp.name, split_sentences=split_sentences)
59
 
60
  return fp.name
61