Spaces:
Running
Running
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space.""" | |
import argparse | |
import json | |
from datetime import datetime | |
import gradio as gr | |
import pandas as pd | |
import pytz | |
from constants import * | |
from constants import column_names | |
# get the last updated time from the elo_ranks.all.jsonl file | |
LAST_UPDATED = None | |
# with open("_intro.md", "r") as f: | |
# INTRO_MD = f.read() | |
INTRO_MD = "" | |
with open("_header.md", "r") as f: | |
HEADER_MD = f.read() | |
raw_data = None | |
original_df = None | |
def df_filters(mode_selection_radio, show_open_source_model_only): | |
global original_df | |
original_df.insert(0, "", range(1, 1 + len(original_df))) | |
return original_df.copy() | |
def _gstr(text): | |
return gr.Text(text, visible=False) | |
def _tab_leaderboard(): | |
global original_df, available_models | |
if True: | |
default_mode = "greedy" | |
default_main_df = df_filters(default_mode, False) | |
leaderboard_table = gr.components.Dataframe( | |
value=default_main_df, | |
datatype= ["number", "markdown", "markdown", "number"], | |
# max_rows=None, | |
height=1000, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
column_widths=[50, 150, 150, 100, 120, 120, 100,100,110,100], | |
wrap=True | |
# min_width=60, | |
) | |
def _tab_submit(): | |
markdown_text = """ | |
Please create an issue on our [Github](https://github.com/allenai/super-benchmark) repository with output of trajectories of your model and results. We will update the leaderboard accordingly. | |
""" | |
gr.Markdown("## π Submit Your Results\n\n" + markdown_text, elem_classes="markdown-text") | |
def build_demo(): | |
global original_df | |
with gr.Blocks(theme=gr.themes.Soft(), css=css, js=js_light) as demo: | |
# convert LAST_UPDATED to the PDT time | |
LAST_UPDATED = datetime.now(pytz.timezone('US/Pacific')).strftime("%Y-%m-%d %H:%M:%S") | |
header_md_text = HEADER_MD.replace("{LAST_UPDATED}", str(LAST_UPDATED)) | |
gr.Markdown(header_md_text, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π Leaderboard", elem_id="od-benchmark-tab-table", id=0): | |
_tab_leaderboard() | |
with gr.TabItem("π Submit Your Results", elem_id="od-benchmark-tab-table", id=3): | |
_tab_submit() | |
return demo | |
def data_load(result_file): | |
global raw_data, original_df | |
print(f"Loading {result_file}") | |
column_names_main = column_names.copy() | |
# column_names_main.update({}) | |
main_ordered_columns = ORDERED_COLUMN_NAMES | |
# filter the data with Total Puzzles == 1000 | |
click_url = True | |
# read json file from the result_file | |
with open(result_file, "r") as f: | |
raw_data = json.load(f) | |
# floatify the data, if possible | |
for d in raw_data: | |
for k, v in d.items(): | |
try: | |
d[k] = float(v) | |
except: | |
pass | |
original_df = pd.DataFrame(raw_data) | |
original_df.sort_values(by="Expert (Accuracy)", ascending=False, inplace=True) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--share", action="store_true") | |
parser.add_argument("--result_file", help="Path to results table", default="ZeroEval-main/result_dirs/leaderboard.json") | |
args = parser.parse_args() | |
data_load(args.result_file) | |
demo = build_demo() | |
demo.launch(share=args.share, height=3000, width="100%") | |