expression-recognition / utils /model_loader.py
allantacuelwvsu's picture
upload app and supporting files
52109c6
raw
history blame contribute delete
977 Bytes
import torch
import torch.nn as nn
class ExpressionCNN(nn.Module):
def __init__(self, num_classes=7):
super(ExpressionCNN, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(1, 32, 3, padding=1), nn.ReLU(), nn.BatchNorm2d(32), nn.MaxPool2d(2),
nn.Conv2d(32, 64, 3, padding=1), nn.ReLU(), nn.BatchNorm2d(64), nn.MaxPool2d(2),
nn.Conv2d(64, 128, 3, padding=1), nn.ReLU(), nn.BatchNorm2d(128), nn.MaxPool2d(2),
nn.Conv2d(128, 256, 3, padding=1), nn.ReLU(), nn.BatchNorm2d(256), nn.AdaptiveAvgPool2d((1, 1))
)
self.fc = nn.Sequential(
nn.Flatten(),
nn.Linear(256, num_classes)
)
def forward(self, x):
x = self.conv(x)
x = self.fc(x)
return x
def load_model(model_path, device):
model = ExpressionCNN()
model.load_state_dict(torch.load(model_path, map_location=device))
model.to(device)
model.eval()
return model