import torch import torch.nn as nn class ExpressionCNN(nn.Module): def __init__(self, num_classes=7): super(ExpressionCNN, self).__init__() self.conv = nn.Sequential( nn.Conv2d(1, 32, 3, padding=1), nn.ReLU(), nn.BatchNorm2d(32), nn.MaxPool2d(2), nn.Conv2d(32, 64, 3, padding=1), nn.ReLU(), nn.BatchNorm2d(64), nn.MaxPool2d(2), nn.Conv2d(64, 128, 3, padding=1), nn.ReLU(), nn.BatchNorm2d(128), nn.MaxPool2d(2), nn.Conv2d(128, 256, 3, padding=1), nn.ReLU(), nn.BatchNorm2d(256), nn.AdaptiveAvgPool2d((1, 1)) ) self.fc = nn.Sequential( nn.Flatten(), nn.Linear(256, num_classes) ) def forward(self, x): x = self.conv(x) x = self.fc(x) return x def load_model(model_path, device): model = ExpressionCNN() model.load_state_dict(torch.load(model_path, map_location=device)) model.to(device) model.eval() return model