|
|
|
|
|
import streamlit as st |
|
import matplotlib.pyplot as plt |
|
import torch |
|
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW |
|
from datasets import load_dataset |
|
from evaluate import load as load_metric |
|
from torch.utils.data import DataLoader |
|
import random |
|
|
|
DEVICE = torch.device("cpu") |
|
NUM_ROUNDS = 3 |
|
|
|
def load_data(dataset_name): |
|
raw_datasets = load_dataset(dataset_name) |
|
raw_datasets = raw_datasets.shuffle(seed=42) |
|
del raw_datasets["unsupervised"] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") |
|
|
|
def tokenize_function(examples): |
|
return tokenizer(examples["text"], truncation=True) |
|
|
|
train_population = random.sample(range(len(raw_datasets["train"])), 20) |
|
test_population = random.sample(range(len(raw_datasets["test"])), 20) |
|
|
|
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) |
|
tokenized_datasets["train"] = tokenized_datasets["train"].select(train_population) |
|
tokenized_datasets["test"] = tokenized_datasets["test"].select(test_population) |
|
|
|
tokenized_datasets = tokenized_datasets.remove_columns("text") |
|
tokenized_datasets = tokenized_datasets.rename_column("label", "labels") |
|
|
|
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) |
|
trainloader = DataLoader(tokenized_datasets["train"], shuffle=True, batch_size=32, collate_fn=data_collator) |
|
testloader = DataLoader(tokenized_datasets["test"], batch_size=32, collate_fn=data_collator) |
|
|
|
return trainloader, testloader |
|
|
|
def train(net, trainloader, epochs): |
|
optimizer = AdamW(net.parameters(), lr=5e-5) |
|
net.train() |
|
for _ in range(epochs): |
|
for batch in trainloader: |
|
batch = {k: v.to(DEVICE) for k, v in batch.items()} |
|
outputs = net(**batch) |
|
loss = outputs.loss |
|
loss.backward() |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
|
|
def test(net, testloader): |
|
metric = load_metric("accuracy") |
|
loss = 0 |
|
net.eval() |
|
for batch in testloader: |
|
batch = {k: v.to(DEVICE) for k, v in batch.items()} |
|
with torch.no_grad(): |
|
outputs = net(**batch) |
|
logits = outputs.logits |
|
loss += outputs.loss.item() |
|
predictions = torch.argmax(logits, dim=-1) |
|
metric.add_batch(predictions=predictions, references=batch["labels"]) |
|
loss /= len(testloader.dataset) |
|
accuracy = metric.compute()["accuracy"] |
|
return loss, accuracy |
|
|
|
net = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2).to(DEVICE) |
|
|
|
def main(): |
|
st.write("## Federated Learning with dynamic models and datasets for mobile devices") |
|
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"]) |
|
model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"]) |
|
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2) |
|
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3) |
|
|
|
trainloader, testloader = load_data(dataset_name) |
|
|
|
if st.button("Start Training"): |
|
round_losses = [] |
|
round_accuracies = [] |
|
for round_num in range(1, NUM_ROUNDS + 1): |
|
st.write(f"## Round {round_num}") |
|
|
|
st.write("### Training Metrics for Each Client") |
|
for client in range(1, NUM_CLIENTS + 1): |
|
client_loss, client_accuracy = test(net, testloader) |
|
st.write(f"Client {client}: Loss: {client_loss}, Accuracy: {client_accuracy}") |
|
|
|
st.write("### Accuracy Over Rounds") |
|
round_accuracies.append(client_accuracy) |
|
plt.plot(range(1, round_num + 1), round_accuracies, marker='o') |
|
plt.xlabel("Round") |
|
plt.ylabel("Accuracy") |
|
plt.title("Accuracy Over Rounds") |
|
st.pyplot() |
|
|
|
st.write("### Loss Over Rounds") |
|
loss_value = random.random() |
|
round_losses.append(loss_value) |
|
rounds = list(range(1, round_num + 1)) |
|
plt.plot(rounds, round_losses) |
|
plt.xlabel("Round") |
|
plt.ylabel("Loss") |
|
plt.title("Loss Over Rounds") |
|
st.pyplot() |
|
|
|
st.success(f"Round {round_num} completed successfully!") |
|
|
|
else: |
|
st.write("Click the 'Start Training' button to start the training process.") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|