alisrbdni's picture
Create app.py
4da9684 verified
raw
history blame
4.62 kB
# %%writefile app.py
import streamlit as st
import matplotlib.pyplot as plt
import torch
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
from datasets import load_dataset
from evaluate import load as load_metric
from torch.utils.data import DataLoader
import random
DEVICE = torch.device("cpu")
NUM_ROUNDS = 3
def load_data(dataset_name):
raw_datasets = load_dataset(dataset_name)
raw_datasets = raw_datasets.shuffle(seed=42)
del raw_datasets["unsupervised"]
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True)
train_population = random.sample(range(len(raw_datasets["train"])), 20)
test_population = random.sample(range(len(raw_datasets["test"])), 20)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
tokenized_datasets["train"] = tokenized_datasets["train"].select(train_population)
tokenized_datasets["test"] = tokenized_datasets["test"].select(test_population)
tokenized_datasets = tokenized_datasets.remove_columns("text")
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
trainloader = DataLoader(tokenized_datasets["train"], shuffle=True, batch_size=32, collate_fn=data_collator)
testloader = DataLoader(tokenized_datasets["test"], batch_size=32, collate_fn=data_collator)
return trainloader, testloader
def train(net, trainloader, epochs):
optimizer = AdamW(net.parameters(), lr=5e-5)
net.train()
for _ in range(epochs):
for batch in trainloader:
batch = {k: v.to(DEVICE) for k, v in batch.items()}
outputs = net(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
def test(net, testloader):
metric = load_metric("accuracy")
loss = 0
net.eval()
for batch in testloader:
batch = {k: v.to(DEVICE) for k, v in batch.items()}
with torch.no_grad():
outputs = net(**batch)
logits = outputs.logits
loss += outputs.loss.item()
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch["labels"])
loss /= len(testloader.dataset)
accuracy = metric.compute()["accuracy"]
return loss, accuracy
net = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2).to(DEVICE)
def main():
st.write("## Federated Learning with dynamic models and datasets for mobile devices")
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
trainloader, testloader = load_data(dataset_name)
if st.button("Start Training"):
round_losses = []
round_accuracies = [] # Store accuracy values for each round
for round_num in range(1, NUM_ROUNDS + 1):
st.write(f"## Round {round_num}")
st.write("### Training Metrics for Each Client")
for client in range(1, NUM_CLIENTS + 1):
client_loss, client_accuracy = test(net, testloader) # Placeholder for actual client metrics
st.write(f"Client {client}: Loss: {client_loss}, Accuracy: {client_accuracy}")
st.write("### Accuracy Over Rounds")
round_accuracies.append(client_accuracy) # Append the accuracy for this round
plt.plot(range(1, round_num + 1), round_accuracies, marker='o') # Plot accuracy over rounds
plt.xlabel("Round")
plt.ylabel("Accuracy")
plt.title("Accuracy Over Rounds")
st.pyplot()
st.write("### Loss Over Rounds")
loss_value = random.random() # Placeholder for loss values
round_losses.append(loss_value)
rounds = list(range(1, round_num + 1))
plt.plot(rounds, round_losses)
plt.xlabel("Round")
plt.ylabel("Loss")
plt.title("Loss Over Rounds")
st.pyplot()
st.success(f"Round {round_num} completed successfully!")
else:
st.write("Click the 'Start Training' button to start the training process.")
if __name__ == "__main__":
main()