Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%writefile app.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import torch
|
6 |
+
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
|
7 |
+
from datasets import load_dataset
|
8 |
+
from evaluate import load as load_metric
|
9 |
+
from torch.utils.data import DataLoader
|
10 |
+
import random
|
11 |
+
|
12 |
+
DEVICE = torch.device("cpu")
|
13 |
+
NUM_ROUNDS = 3
|
14 |
+
|
15 |
+
def load_data(dataset_name):
|
16 |
+
raw_datasets = load_dataset(dataset_name)
|
17 |
+
raw_datasets = raw_datasets.shuffle(seed=42)
|
18 |
+
del raw_datasets["unsupervised"]
|
19 |
+
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
21 |
+
|
22 |
+
def tokenize_function(examples):
|
23 |
+
return tokenizer(examples["text"], truncation=True)
|
24 |
+
|
25 |
+
train_population = random.sample(range(len(raw_datasets["train"])), 20)
|
26 |
+
test_population = random.sample(range(len(raw_datasets["test"])), 20)
|
27 |
+
|
28 |
+
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
|
29 |
+
tokenized_datasets["train"] = tokenized_datasets["train"].select(train_population)
|
30 |
+
tokenized_datasets["test"] = tokenized_datasets["test"].select(test_population)
|
31 |
+
|
32 |
+
tokenized_datasets = tokenized_datasets.remove_columns("text")
|
33 |
+
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
34 |
+
|
35 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
36 |
+
trainloader = DataLoader(tokenized_datasets["train"], shuffle=True, batch_size=32, collate_fn=data_collator)
|
37 |
+
testloader = DataLoader(tokenized_datasets["test"], batch_size=32, collate_fn=data_collator)
|
38 |
+
|
39 |
+
return trainloader, testloader
|
40 |
+
|
41 |
+
def train(net, trainloader, epochs):
|
42 |
+
optimizer = AdamW(net.parameters(), lr=5e-5)
|
43 |
+
net.train()
|
44 |
+
for _ in range(epochs):
|
45 |
+
for batch in trainloader:
|
46 |
+
batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
47 |
+
outputs = net(**batch)
|
48 |
+
loss = outputs.loss
|
49 |
+
loss.backward()
|
50 |
+
optimizer.step()
|
51 |
+
optimizer.zero_grad()
|
52 |
+
|
53 |
+
def test(net, testloader):
|
54 |
+
metric = load_metric("accuracy")
|
55 |
+
loss = 0
|
56 |
+
net.eval()
|
57 |
+
for batch in testloader:
|
58 |
+
batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
59 |
+
with torch.no_grad():
|
60 |
+
outputs = net(**batch)
|
61 |
+
logits = outputs.logits
|
62 |
+
loss += outputs.loss.item()
|
63 |
+
predictions = torch.argmax(logits, dim=-1)
|
64 |
+
metric.add_batch(predictions=predictions, references=batch["labels"])
|
65 |
+
loss /= len(testloader.dataset)
|
66 |
+
accuracy = metric.compute()["accuracy"]
|
67 |
+
return loss, accuracy
|
68 |
+
|
69 |
+
net = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2).to(DEVICE)
|
70 |
+
|
71 |
+
def main():
|
72 |
+
st.write("## Federated Learning with dynamic models and datasets for mobile devices")
|
73 |
+
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
74 |
+
model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
|
75 |
+
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
76 |
+
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
77 |
+
|
78 |
+
trainloader, testloader = load_data(dataset_name)
|
79 |
+
|
80 |
+
if st.button("Start Training"):
|
81 |
+
round_losses = []
|
82 |
+
round_accuracies = [] # Store accuracy values for each round
|
83 |
+
for round_num in range(1, NUM_ROUNDS + 1):
|
84 |
+
st.write(f"## Round {round_num}")
|
85 |
+
|
86 |
+
st.write("### Training Metrics for Each Client")
|
87 |
+
for client in range(1, NUM_CLIENTS + 1):
|
88 |
+
client_loss, client_accuracy = test(net, testloader) # Placeholder for actual client metrics
|
89 |
+
st.write(f"Client {client}: Loss: {client_loss}, Accuracy: {client_accuracy}")
|
90 |
+
|
91 |
+
st.write("### Accuracy Over Rounds")
|
92 |
+
round_accuracies.append(client_accuracy) # Append the accuracy for this round
|
93 |
+
plt.plot(range(1, round_num + 1), round_accuracies, marker='o') # Plot accuracy over rounds
|
94 |
+
plt.xlabel("Round")
|
95 |
+
plt.ylabel("Accuracy")
|
96 |
+
plt.title("Accuracy Over Rounds")
|
97 |
+
st.pyplot()
|
98 |
+
|
99 |
+
st.write("### Loss Over Rounds")
|
100 |
+
loss_value = random.random() # Placeholder for loss values
|
101 |
+
round_losses.append(loss_value)
|
102 |
+
rounds = list(range(1, round_num + 1))
|
103 |
+
plt.plot(rounds, round_losses)
|
104 |
+
plt.xlabel("Round")
|
105 |
+
plt.ylabel("Loss")
|
106 |
+
plt.title("Loss Over Rounds")
|
107 |
+
st.pyplot()
|
108 |
+
|
109 |
+
st.success(f"Round {round_num} completed successfully!")
|
110 |
+
|
111 |
+
else:
|
112 |
+
st.write("Click the 'Start Training' button to start the training process.")
|
113 |
+
|
114 |
+
if __name__ == "__main__":
|
115 |
+
main()
|