Spaces:
Running
Running
Update speechscore.py
Browse files- speechscore.py +11 -8
speechscore.py
CHANGED
@@ -20,7 +20,7 @@ from scores.cbak import CBAK
|
|
20 |
from scores.covl import COVL
|
21 |
from scores.mcd import MCD
|
22 |
|
23 |
-
def compute_mean_results(*results):
|
24 |
mean_result = {}
|
25 |
|
26 |
# Use the first dictionary as a reference for keys
|
@@ -28,10 +28,13 @@ def compute_mean_results(*results):
|
|
28 |
# If the value is a nested dictionary, recurse
|
29 |
if isinstance(results[0][key], dict):
|
30 |
nested_results = [d[key] for d in results]
|
31 |
-
mean_result[key] = compute_mean_results(*nested_results)
|
32 |
# Otherwise, compute the mean of the values
|
33 |
else:
|
34 |
-
|
|
|
|
|
|
|
35 |
|
36 |
return mean_result
|
37 |
|
@@ -46,7 +49,7 @@ class ScoresList:
|
|
46 |
def __str__(self):
|
47 |
return 'Scores: ' + ' '.join([x.name for x in self.scores])
|
48 |
|
49 |
-
def __call__(self, test_path, reference_path, window=None, score_rate=None, return_mean=False):
|
50 |
"""
|
51 |
window: float
|
52 |
the window length in seconds to use for scoring the files.
|
@@ -68,7 +71,7 @@ class ScoresList:
|
|
68 |
data['rate'] = score_rate
|
69 |
|
70 |
for score in self.scores:
|
71 |
-
result_score = score.scoring(data, window, score_rate)
|
72 |
results[score.name] = result_score
|
73 |
else:
|
74 |
if os.path.isdir(test_path):
|
@@ -81,18 +84,18 @@ class ScoresList:
|
|
81 |
else:
|
82 |
data = self.audio_reader(test_path+'/'+audio_id, None)
|
83 |
for score in self.scores:
|
84 |
-
result_score = score.scoring(data, window, score_rate)
|
85 |
results_id[score.name] = result_score
|
86 |
results[audio_id] = results_id
|
87 |
|
88 |
elif os.path.isfile(test_path):
|
89 |
data = self.audio_reader(test_path, reference_path)
|
90 |
for score in self.scores:
|
91 |
-
result_score = score.scoring(data, window, score_rate)
|
92 |
results[score.name] = result_score
|
93 |
|
94 |
if return_mean:
|
95 |
-
mean_result = compute_mean_results(*results.values())
|
96 |
results['Mean_Score'] = mean_result
|
97 |
|
98 |
return results
|
|
|
20 |
from scores.covl import COVL
|
21 |
from scores.mcd import MCD
|
22 |
|
23 |
+
def compute_mean_results(*results, round_digits=None):
|
24 |
mean_result = {}
|
25 |
|
26 |
# Use the first dictionary as a reference for keys
|
|
|
28 |
# If the value is a nested dictionary, recurse
|
29 |
if isinstance(results[0][key], dict):
|
30 |
nested_results = [d[key] for d in results]
|
31 |
+
mean_result[key] = compute_mean_results(*nested_results, round_digits=round_digits)
|
32 |
# Otherwise, compute the mean of the values
|
33 |
else:
|
34 |
+
if round_digits is not None:
|
35 |
+
mean_result[key] = round(sum(d[key] for d in results) / len(results), round_digits)
|
36 |
+
else:
|
37 |
+
mean_result[key] = sum(d[key] for d in results) / len(results)
|
38 |
|
39 |
return mean_result
|
40 |
|
|
|
49 |
def __str__(self):
|
50 |
return 'Scores: ' + ' '.join([x.name for x in self.scores])
|
51 |
|
52 |
+
def __call__(self, test_path, reference_path, window=None, score_rate=None, return_mean=False, round_digits=None):
|
53 |
"""
|
54 |
window: float
|
55 |
the window length in seconds to use for scoring the files.
|
|
|
71 |
data['rate'] = score_rate
|
72 |
|
73 |
for score in self.scores:
|
74 |
+
result_score = score.scoring(data, window, score_rate, round_digits)
|
75 |
results[score.name] = result_score
|
76 |
else:
|
77 |
if os.path.isdir(test_path):
|
|
|
84 |
else:
|
85 |
data = self.audio_reader(test_path+'/'+audio_id, None)
|
86 |
for score in self.scores:
|
87 |
+
result_score = score.scoring(data, window, score_rate, round_digits)
|
88 |
results_id[score.name] = result_score
|
89 |
results[audio_id] = results_id
|
90 |
|
91 |
elif os.path.isfile(test_path):
|
92 |
data = self.audio_reader(test_path, reference_path)
|
93 |
for score in self.scores:
|
94 |
+
result_score = score.scoring(data, window, score_rate, round_digits)
|
95 |
results[score.name] = result_score
|
96 |
|
97 |
if return_mean:
|
98 |
+
mean_result = compute_mean_results(*results.values(), round_digits=round_digits)
|
99 |
results['Mean_Score'] = mean_result
|
100 |
|
101 |
return results
|