Spaces:
Running
Running
from basis import ScoreBasis | |
import numpy as np | |
from scipy.linalg import toeplitz | |
from scores.helper import lpcoeff | |
class LLR(ScoreBasis): | |
def __init__(self): | |
super(LLR, self).__init__(name='LLR') | |
self.intrusive = False | |
def windowed_scoring(self, audios, score_rate): | |
if len(audios) != 2: | |
raise ValueError('LLR needs a reference and a test signals.') | |
return cal_LLR(audios[0], audios[1], score_rate) | |
def cal_LLR(ref_wav, deg_wav, srate): | |
# obtained from https://github.com/wooseok-shin/MetricGAN-plus-pytorch/blob/main/metric_functions/metric_helper.py | |
clean_speech = ref_wav | |
processed_speech = deg_wav | |
clean_length = ref_wav.shape[0] | |
processed_length = deg_wav.shape[0] | |
assert clean_length == processed_length, clean_length | |
winlength = round(30 * srate / 1000.) # 240 wlen in samples | |
skiprate = np.floor(winlength / 4) | |
if srate < 10000: | |
# LPC analysis order | |
P = 10 | |
else: | |
P = 16 | |
# For each frame of input speech, calculate the Log Likelihood Ratio | |
num_frames = int(clean_length / skiprate - (winlength / skiprate)) | |
start = 0 | |
time = np.linspace(1, winlength, winlength) / (winlength + 1) | |
window = 0.5 * (1 - np.cos(2 * np.pi * time)) | |
distortion = [] | |
for frame_count in range(num_frames): | |
# (1) Get the Frames for the test and reference speeech. | |
# Multiply by Hanning window. | |
clean_frame = clean_speech[start:start+winlength] | |
processed_frame = processed_speech[start:start+winlength] | |
clean_frame = clean_frame * window | |
processed_frame = processed_frame * window | |
# (2) Get the autocorrelation logs and LPC params used | |
# to compute the LLR measure | |
R_clean, Ref_clean, A_clean = lpcoeff(clean_frame, P) | |
R_processed, Ref_processed, A_processed = lpcoeff(processed_frame, P) | |
A_clean = A_clean[None, :] | |
A_processed = A_processed[None, :] | |
# (3) Compute the LLR measure | |
numerator = A_processed.dot(toeplitz(R_clean)).dot(A_processed.T) | |
denominator = A_clean.dot(toeplitz(R_clean)).dot(A_clean.T) | |
if (numerator/denominator) <= 0: | |
print(f'Numerator: {numerator}') | |
print(f'Denominator: {denominator}') | |
log_ = np.log(numerator / denominator) | |
distortion.append(np.squeeze(log_)) | |
start += int(skiprate) | |
return np.mean(np.nan_to_num(np.array(distortion))) | |