Spaces:
Running
Running
from basis import ScoreBasis | |
import numpy as np | |
from pesq import pesq | |
from scores.helper import wss, llr, SSNR, trim_mos | |
class CSIG(ScoreBasis): | |
def __init__(self): | |
super(CSIG, self).__init__(name='CSIG') | |
self.score_rate = 16000 | |
def windowed_scoring(self, audios, score_rate): | |
if len(audios) != 2: | |
return None | |
return cal_CSIG(audios[0], audios[1], score_rate) | |
def cal_CSIG(target_wav, pred_wav, fs): | |
alpha = 0.95 | |
# Compute WSS measure | |
wss_dist_vec = wss(target_wav, pred_wav, fs) | |
wss_dist_vec = sorted(wss_dist_vec, reverse=False) | |
wss_dist = np.mean(wss_dist_vec[:int(round(len(wss_dist_vec) * alpha))]) | |
# Compute LLR measure | |
LLR_dist = llr(target_wav, pred_wav, fs) | |
LLR_dist = sorted(LLR_dist, reverse=False) | |
LLRs = LLR_dist | |
LLR_len = round(len(LLR_dist) * alpha) | |
llr_mean = np.mean(LLRs[:LLR_len]) | |
# Compute the PESQ | |
pesq_raw = pesq(fs, target_wav, pred_wav, 'wb') | |
# Csig | |
Csig = 3.093 - 1.029 * llr_mean + 0.603 * pesq_raw - 0.009 * wss_dist | |
Csig = float(trim_mos(Csig)) | |
return Csig | |