alessandro trinca tornidor
feat: add dockerfile and save yml silero model within system temp folders to support docker container execution
b5c05cd
raw
history blame
6.79 kB
import base64
import json
import os
import tempfile
import time
import audioread
import numpy as np
import torch
from torchaudio.transforms import Resample
from aip_trainer import WordMatching as wm, app_logger
from aip_trainer import pronunciationTrainer
trainer_SST_lambda = {
'de': pronunciationTrainer.getTrainer("de"),
'en': pronunciationTrainer.getTrainer("en")
}
transform = Resample(orig_freq=48000, new_freq=16000)
def lambda_handler(event, context):
data = json.loads(event['body'])
real_text = data['title']
file_bytes = base64.b64decode(
data['base64Audio'][22:].encode('utf-8'))
language = data['language']
if len(real_text) == 0:
return {
'statusCode': 200,
'headers': {
'Access-Control-Allow-Headers': '*',
'Access-Control-Allow-Credentials': "true",
'Access-Control-Allow-Origin': 'http://127.0.0.1:3000/',
'Access-Control-Allow-Methods': 'OPTIONS,POST,GET'
},
'body': ''
}
start0 = time.time()
with tempfile.NamedTemporaryFile(prefix="temp_sound_speech_score_", suffix=".ogg", delete=False) as f1:
f1.write(file_bytes)
duration = time.time() - start0
app_logger.info(f'Saved binary in file in {duration}s.')
random_file_name = f1.name
start = time.time()
app_logger.info(f'Loading .ogg file file {random_file_name} ...')
signal, fs = audioread_load(random_file_name)
duration = time.time() - start
app_logger.info(f'Read .ogg file {random_file_name} in {duration}s.')
signal = transform(torch.Tensor(signal)).unsqueeze(0)
duration = time.time() - start
app_logger.info(f'Loaded .ogg file {random_file_name} in {duration}s.')
language_trainer_sst_lambda = trainer_SST_lambda[language]
app_logger.info('language_trainer_sst_lambda: preparing...')
result = language_trainer_sst_lambda.processAudioForGivenText(signal, real_text)
app_logger.info(f'language_trainer_sst_lambda: result: {result}...')
start = time.time()
os.remove(random_file_name)
duration = time.time() - start
app_logger.info(f'Deleted file {random_file_name} in {duration}s.')
start = time.time()
real_transcripts_ipa = ' '.join(
[word[0] for word in result['real_and_transcribed_words_ipa']])
matched_transcripts_ipa = ' '.join(
[word[1] for word in result['real_and_transcribed_words_ipa']])
real_transcripts = ' '.join(
[word[0] for word in result['real_and_transcribed_words']])
matched_transcripts = ' '.join(
[word[1] for word in result['real_and_transcribed_words']])
words_real = real_transcripts.lower().split()
mapped_words = matched_transcripts.split()
is_letter_correct_all_words = ''
for idx, word_real in enumerate(words_real):
mapped_letters, mapped_letters_indices = wm.get_best_mapped_words(
mapped_words[idx], word_real)
is_letter_correct = wm.getWhichLettersWereTranscribedCorrectly(
word_real, mapped_letters) # , mapped_letters_indices)
is_letter_correct_all_words += ''.join([str(is_correct)
for is_correct in is_letter_correct]) + ' '
pair_accuracy_category = ' '.join(
[str(category) for category in result['pronunciation_categories']])
duration = time.time() - start
duration_tot = time.time() - start0
app_logger.info(f'Time to post-process results: {duration}, tot_duration:{duration_tot}.')
res = {'real_transcript': result['recording_transcript'],
'ipa_transcript': result['recording_ipa'],
'pronunciation_accuracy': str(int(result['pronunciation_accuracy'])),
'real_transcripts': real_transcripts, 'matched_transcripts': matched_transcripts,
'real_transcripts_ipa': real_transcripts_ipa, 'matched_transcripts_ipa': matched_transcripts_ipa,
'pair_accuracy_category': pair_accuracy_category,
'start_time': result['start_time'],
'end_time': result['end_time'],
'is_letter_correct_all_words': is_letter_correct_all_words}
return json.dumps(res)
# From Librosa
def calc_start_end(sr_native, time_position, n_channels):
return int(np.round(sr_native * time_position)) * n_channels
def audioread_load(path, offset=0.0, duration=None, dtype=np.float32):
"""Load an audio buffer using audioread.
This loads one block at a time, and then concatenates the results.
"""
y = []
app_logger.debug(f"reading audio file at path:{path} ...")
with audioread.audio_open(path) as input_file:
sr_native = input_file.samplerate
n_channels = input_file.channels
s_start = calc_start_end(sr_native, offset, n_channels)
if duration is None:
s_end = np.inf
else:
duration = calc_start_end(sr_native, duration, n_channels)
s_end = duration + s_start
n = 0
for frame in input_file:
frame = buf_to_float(frame, dtype=dtype)
n_prev = n
n = n + len(frame)
if n < s_start:
# offset is after the current frame
# keep reading
continue
if s_end < n_prev:
# we're off the end. stop reading
break
if s_end < n:
# the end is in this frame. crop.
frame = frame[: s_end - n_prev]
if n_prev <= s_start <= n:
# beginning is in this frame
frame = frame[(s_start - n_prev):]
# tack on the current frame
y.append(frame)
if y:
y = np.concatenate(y)
if n_channels > 1:
y = y.reshape((-1, n_channels)).T
else:
y = np.empty(0, dtype=dtype)
return y, sr_native
# From Librosa
def buf_to_float(x, n_bytes=2, dtype=np.float32):
"""Convert an integer buffer to floating point values.
This is primarily useful when loading integer-valued wav data
into numpy arrays.
Parameters
----------
x : np.ndarray [dtype=int]
The integer-valued data buffer
n_bytes : int [1, 2, 4]
The number of bytes per sample in ``x``
dtype : numeric type
The target output type (default: 32-bit float)
Returns
-------
x_float : np.ndarray [dtype=float]
The input data buffer cast to floating point
"""
# Invert the scale of the data
scale = 1.0 / float(1 << ((8 * n_bytes) - 1))
# Construct the format string
fmt = "<i{:d}".format(n_bytes)
# Rescale and format the data buffer
return scale * np.frombuffer(x, fmt).astype(dtype)