aleo1's picture
Upload 41 files
bb6012a verified
from collections import OrderedDict
from typing import Tuple, Union
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from ..utils.dataset import tokenize
from ..utils.simple_tokenizer import SimpleTokenizer as _Tokenizer
_tokenizer = _Tokenizer()
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1):
super().__init__()
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = None
self.stride = stride
if stride > 1 or inplanes != planes * Bottleneck.expansion:
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
self.downsample = nn.Sequential(
OrderedDict([("-1", nn.AvgPool2d(stride)),
("0",
nn.Conv2d(inplanes,
planes * self.expansion,
1,
stride=1,
bias=False)),
("1", nn.BatchNorm2d(planes * self.expansion))]))
def forward(self, x: torch.Tensor):
identity = x
out = self.relu(self.bn1(self.conv1(x)))
out = self.relu(self.bn2(self.conv2(out)))
out = self.avgpool(out)
out = self.bn3(self.conv3(out))
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
"""
attenpool used in CRIS (output: C1/C2/C3 3 deiffent feature maps)
"""
class ModifiedAttentionPool2d(nn.Module):
def __init__(self,
spacial_dim: int,
embed_dim: int,
num_heads: int,
output_dim: int = None):
super().__init__()
self.spacial_dim = spacial_dim
self.positional_embedding = nn.Parameter(
torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
# residual
self.connect = nn.Sequential(
nn.Conv2d(embed_dim, output_dim, 1, stride=1, bias=False),
nn.BatchNorm2d(output_dim))
def resize_pos_embed(self, pos_embed, input_shpae):
"""Resize pos_embed weights.
Resize pos_embed using bicubic interpolate method.
Args:
pos_embed (torch.Tensor): Position embedding weights.
input_shpae (tuple): Tuple for (downsampled input image height,
downsampled input image width).
pos_shape (tuple): The resolution of downsampled origin training
image.
mode (str): Algorithm used for upsampling:
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
``'trilinear'``. Default: ``'nearest'``
Return:
torch.Tensor: The resized pos_embed of shape [B, C, L_new]
"""
assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]'
pos_h = pos_w = self.spacial_dim
cls_token_weight = pos_embed[:, 0]
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):]
pos_embed_weight = pos_embed_weight.reshape(
1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2)
pos_embed_weight = F.interpolate(pos_embed_weight,
size=input_shpae,
align_corners=False,
mode='bicubic')
cls_token_weight = cls_token_weight.unsqueeze(1)
pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2)
# pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1)
return pos_embed_weight.transpose(-2, -1)
def forward(self, x):
B, C, H, W = x.size()
res = self.connect(x)
x = x.reshape(B, C, -1) # NC(HW)
# x = torch.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(1+HW)
pos_embed = self.positional_embedding.unsqueeze(0)
pos_embed = self.resize_pos_embed(pos_embed, (H, W)) # NC(HW)
x = x + pos_embed.to(x.dtype) # NC(HW)
x = x.permute(2, 0, 1) # (HW)NC
x, _ = F.multi_head_attention_forward(
query=x,
key=x,
value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat(
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False)
xt = x[0]
x = x.permute(1, 2, 0).reshape(B, -1, H, W)
x = x + res
x = F.relu(x, True)
return x, xt
"""
attenpool used in Clip (output: a tensor (b, dim) image encoding)
"""
class AttentionPool2d(nn.Module):
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
def forward(self, x):
x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
x, _ = F.multi_head_attention_forward(
query=x[:1], key=x, value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False
)
return x.squeeze(0)
class ModifiedResNet(nn.Module):
"""
A ResNet class that is similar to torchvision's but contains the following changes:
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
- The final pooling layer is a QKV attention instead of an average pool
"""
def __init__(self,
layers,
output_dim,
heads,
input_resolution=224,
width=64):
super().__init__()
self.output_dim = output_dim
self.input_resolution = input_resolution
# the 3-layer stem
self.conv1 = nn.Conv2d(3,
width // 2,
kernel_size=3,
stride=2,
padding=1,
bias=False)
self.bn1 = nn.BatchNorm2d(width // 2)
self.conv2 = nn.Conv2d(width // 2,
width // 2,
kernel_size=3,
padding=1,
bias=False)
self.bn2 = nn.BatchNorm2d(width // 2)
self.conv3 = nn.Conv2d(width // 2,
width,
kernel_size=3,
padding=1,
bias=False)
self.bn3 = nn.BatchNorm2d(width)
self.avgpool = nn.AvgPool2d(2)
self.relu = nn.ReLU(inplace=True)
# residual layers
self._inplanes = width # this is a *mutable* variable used during construction
self.layer1 = self._make_layer(width, layers[0])
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
embed_dim = width * 32 # the ResNet feature dimension
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim,
heads, output_dim)
# self.modifiedattnpool = ModifiedAttentionPool2d(input_resolution // 32, embed_dim,
# heads, output_dim)
def _make_layer(self, planes, blocks, stride=1):
layers = [Bottleneck(self._inplanes, planes, stride)]
self._inplanes = planes * Bottleneck.expansion
for _ in range(1, blocks):
layers.append(Bottleneck(self._inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
def stem(x):
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2),
(self.conv3, self.bn3)]:
x = self.relu(bn(conv(x)))
x = self.avgpool(x)
return x
x = x.type(self.conv1.weight.dtype)
x = stem(x)
x = self.layer1(x)
x2 = self.layer2(x)
x3 = self.layer3(x2)
x4 = self.layer4(x3)
x5 = self.attnpool(x4)
# x4 = self.modifiedattnpool(x4)
return (x2, x3, x4), x5
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self,
d_model: int,
n_head: int,
attn_mask: torch.Tensor = None):
super().__init__()
# print(n_head)
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(
OrderedDict([("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(
dtype=x.dtype,
device=x.device) if self.attn_mask is not None else None
res = self.attn(x, x, x, need_weights=False,
attn_mask=self.attn_mask)[0]
# print(res)
return res
def forward(self, x: torch.Tensor):
# a = self.attention(self.ln_1(x))
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
def forward(self, x: torch.Tensor):
return self.resblocks(x)
class ViTTransformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
def forward(self, x: torch.Tensor):
outputs = []
i = 1
for block in self.resblocks:
x = block(x)
if i > 7:
outputs.append(x)
i = i + 1
return outputs
class VisionTransformer(nn.Module):
def __init__(self, input_resolution: int, patch_size: int, width: int,
layers: int, heads: int, output_dim: int):
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(in_channels=3,
out_channels=width,
kernel_size=patch_size,
stride=patch_size,
bias=False)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn(
(input_resolution // patch_size) ** 2 + 1, width))
self.ln_pre = LayerNorm(width)
self.transformer = ViTTransformer(width, layers, heads)
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
def forward(self, x: torch.Tensor):
# input: batch, 3, 224, 224
# batch, 1024, 16, 16
x = self.conv1(x) # shape = [*, width, grid, grid]
# batch, 1024, 256
x = x.reshape(x.shape[0], x.shape[1],
-1) # shape = [*, width, grid ** 2]
# batch, 256, 1024
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
# batch, 257, 1024
x = torch.cat([
self.class_embedding.to(x.dtype) + torch.zeros(
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x
],
dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
# 257, batch, 1024
x = x.permute(1, 0, 2) # NLD -> LND
out = self.transformer(x)
# batch, 257, 1024
x1, x2 ,x3, x4 = out[0], out[1], out[2], out[3]
x1 = x1.permute(1, 0, 2)
x2 = x2.permute(1, 0, 2)
x3 = x3.permute(1, 0, 2)
x4 = x4.permute(1, 0, 2) # LND -> NLD
# 用于分类
x = self.ln_post(x4[:, 0, :])
#feature
# x_f = self.ln_post(x[:, 1:, :])
if self.proj is not None:
x = x @ self.proj
return (x1[:, 1:, :], x2[:, 1:, :], x3[:, 1:, :], x4[:, 1:, :]), x
class ModifiedVisionTransformer(nn.Module):
def __init__(self, input_resolution: int, patch_size: int, width: int,
layers: int, heads: int, output_dim: int):
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(in_channels=3,
out_channels=width,
kernel_size=patch_size,
stride=patch_size,
bias=False)
self.conv2 = nn.Conv2d(in_channels=3,
out_channels=width // 2,
kernel_size=patch_size // 2,
stride=patch_size // 2,
bias=False)
self.conv3 = nn.Conv2d(in_channels=3,
out_channels=width,
kernel_size=patch_size * 2,
stride=patch_size * 2,
bias=False)
self.conv_layers = [self.conv1, self.conv2]
scale = width**-0.5
self.class_embedding1 = nn.Parameter(scale * torch.randn(width))
self.class_embedding2 = nn.Parameter(scale * torch.randn(width // 2))
self.cls_layers = [self.class_embedding1, self.class_embedding2]
self.positional_embedding1 = nn.Parameter(scale * torch.randn(
(input_resolution // patch_size)**2 + 1, width))
self.positional_embedding2 = nn.Parameter(scale * torch.randn(
(input_resolution // (patch_size // 2)) ** 2 + 1, width // 2))
self.pos_layers = [self.positional_embedding1, self.positional_embedding2]
self.ln_pre1 = LayerNorm(width)
self.ln_pre2 = LayerNorm(width // 2)
self.pre_layers = [self.ln_pre1, self.ln_pre2]
self.transformer1 = Transformer(width, layers, heads)
self.transformer2 = Transformer(width // 2, layers, heads)
self.tran_layers = [self.transformer1, self.transformer2]
self.ln_post1 = LayerNorm(width)
self.ln_post2 = LayerNorm(width // 2)
self.post_layers = [self.ln_post1, self.ln_post2]
self.proj1 = nn.Parameter(scale * torch.randn(width, output_dim * 2))
self.proj2 = nn.Parameter(scale * torch.randn(width // 2, output_dim))
self.proj_layers = [self.proj1, self.proj2]
def forward(self, x: torch.Tensor):
# input: batch, 3, 224, 224
input = x
# batch, 1024, 16, 16
out = []
f = []
cl = []
for i in range(2):
x = self.conv_layers[i](input) # shape = [*, width, grid, grid]
b, c, w, h = x.shape
# batch, 1024, 256
x = x.reshape(x.shape[0], x.shape[1],
-1) # shape = [*, width, grid ** 2]
# batch, 256, 1024
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
# batch, 257, 1024
x = torch.cat([
self.cls_layers[i].to(x.dtype) + torch.zeros(
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x
],
dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.pos_layers[i].to(x.dtype)
x = self.pre_layers[i](x)
# 257, batch, 1024
x = x.permute(1, 0, 2) # NLD -> LND
x, cls = self.tran_layers[i](x)
# batch, 257, 1024
x = x.permute(1, 0, 2) # LND -> NLD
# 用于分类
# x = self.ln_post(x[:, 0, :])
# feature
x = self.post_layers[i](x[:, 1:, :])
if self.proj_layers[i] is not None:
x = x @ self.proj_layers[i]
cls = [j @ self.proj_layers[i] for j in cls]
feat = x.permute(0,2,1).reshape(b, x.shape[2] , w, h)
out.append(x)
f.append(feat)
cl.append(cls)
return out, f, cl
"""
Long CLIP
"""
class LCLIP(nn.Module):
def __init__(self,
embed_dim: int,
# vision
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
# text
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
load_from_clip: bool
):
super().__init__()
self.context_length = 248
if isinstance(vision_layers, (tuple, list)):
vision_heads = vision_width * 32 // 64
self.visual = ModifiedResNet(
layers=vision_layers,
output_dim=embed_dim,
heads=vision_heads,
input_resolution=image_resolution,
width=vision_width
)
else:
vision_heads = vision_width // 64
self.visual = VisionTransformer(
input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim
)
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask()
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
# self.positional_embedding = nn.Parameter(torch.empty(248, transformer_width))
if load_from_clip == False:
self.positional_embedding = nn.Parameter(torch.empty(248, transformer_width))
self.positional_embedding_res = nn.Parameter(torch.empty(248, transformer_width))
else:
self.positional_embedding = nn.Parameter(torch.empty(248, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
self.mask1 = torch.zeros([248, 1])
self.mask1[:20, :] = 1
self.mask2 = torch.zeros([248, 1])
self.mask2[20:, :] = 1
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
if isinstance(self.visual, ModifiedResNet):
if self.visual.attnpool is not None:
std = self.visual.attnpool.c_proj.in_features ** -0.5
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
for name, param in resnet_block.named_parameters():
if name.endswith("bn3.weight"):
nn.init.zeros_(param)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self):
return self.visual.conv1.weight.dtype
def encode_image(self, image):
return self.visual(image.type(self.dtype))
def encode_text(self, text):
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
# x = x + (self.positional_embedding.to(x.device) * self.mask1.to(x.device)).type(self.dtype).to(x.device) + (self.positional_embedding_res.to(x.device) * self.mask2.to(x.device)).type(self.dtype).to(x.device)
x = x + (self.positional_embedding.to(x.device) * self.mask1.to(x.device)).type(self.dtype).to(x.device)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x
def encode_text_full(self, text):
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
x = x + (self.positional_embedding.to(x.device) * self.mask1.to(x.device)).type(self.dtype).to(x.device) + (self.positional_embedding_res.to(x.device) * self.mask2.to(x.device)).type(self.dtype).to(x.device)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
#x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x
def forward(self, image, text):
image_features = self.encode_image(image)
text_features, _ = self.encode_text(text)
# normalized features
image_features = image_features / image_features.norm(dim=1, keepdim=True)
text_features = text_features / text_features.norm(dim=1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_image = logit_scale * image_features @ text_features.t()
logits_per_text = logits_per_image.t()
# shape = [global_batch_size, global_batch_size]
return logits_per_image, logits_per_text
"""
original CLIP
"""
class CLIP(nn.Module):
def __init__(
self,
embed_dim: int,
# vision
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
# text
context_length: int,
txt_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int):
super().__init__()
self.context_length = context_length
if isinstance(vision_layers, (tuple, list)):
vision_heads = vision_width * 32 // 64
self.visual = ModifiedResNet(layers=vision_layers,
output_dim=embed_dim,
heads=vision_heads,
input_resolution=image_resolution,
width=vision_width)
# self.fq_attnpool = AttentionPool2d(image_resolution // 32, vision_width* 32,
# vision_heads, embed_dim)
else:
vision_heads = vision_width // 64
self.visual = VisionTransformer(input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim)
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask(txt_length))
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(
torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(
torch.empty(transformer_width, embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.token_embedding.requires_grad_ = False
self.initialize_parameters()
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
if isinstance(self.visual, ModifiedResNet):
if self.visual.attnpool is not None:
std = self.visual.attnpool.c_proj.in_features**-0.5
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
for resnet_block in [
self.visual.layer1, self.visual.layer2, self.visual.layer3,
self.visual.layer4
]:
for name, param in resnet_block.named_parameters():
if name.endswith("bn3.weight"):
nn.init.zeros_(param)
proj_std = (self.transformer.width**-0.5) * (
(2 * self.transformer.layers)**-0.5)
attn_std = self.transformer.width**-0.5
fc_std = (2 * self.transformer.width)**-0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection,
std=self.transformer.width**-0.5)
def build_attention_mask(self, context_length):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(context_length, context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self):
return self.visual.conv1.weight.dtype
def encode_image(self, image):
return self.visual(image.type(self.dtype))
def encode_fq(self, image):
return self.fq_attnpool(image.type(self.dtype))
def encode_text(self, text):
a = self.token_embedding
x = self.token_embedding(text).type(
self.dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.type(self.dtype)[:x.size(1)]
# print(x.shape)
# print(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# print(text[0])
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
state = x[torch.arange(x.shape[0]),
text.argmax(dim=-1)] @ self.text_projection
# x = x @ self.text_projection
# state = x[torch.arange(x.shape[0]), text.argmax(dim=-1)]
return x, state
def forward(self, image, text):
image_features = self.encode_image(image)
text_features = self.encode_text(text)
# normalized features
image_features = image_features / image_features.norm(dim=-1,
keepdim=True)
text_features = text_features / text_features.norm(dim=-1,
keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_image = logit_scale * image_features @ text_features.t()
logits_per_text = logits_per_image.t()
# shape = [global_batch_size, global_batch_size]
return logits_per_image, logits_per_text
"""
modified CLIP : without text encoder
"""
class zhCLIP(nn.Module):
def __init__(self,
embed_dim,
# vision
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int):
super().__init__()
if isinstance(vision_layers, (tuple, list)):
vision_heads = vision_width * 32 // 64
self.visual = ModifiedResNet(layers=vision_layers,
output_dim=embed_dim,
heads=vision_heads,
input_resolution=image_resolution,
width=vision_width)
self.fq_attnpool = AttentionPool2d(image_resolution // 32, vision_width* 32,
vision_heads, embed_dim)
else:
vision_heads = vision_width // 64
self.visual = ModifiedVisionTransformer(input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim)
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
def initialize_parameters(self):
if isinstance(self.visual, ModifiedResNet):
if self.visual.attnpool is not None:
std = self.visual.attnpool.c_proj.in_features**-0.5
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
for resnet_block in [
self.visual.layer1, self.visual.layer2, self.visual.layer3,
self.visual.layer4
]:
for name, param in resnet_block.named_parameters():
if name.endswith("bn3.weight"):
nn.init.zeros_(param)
def build_attention_mask(self, context_length):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(context_length, context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self):
return self.visual.conv1.weight.dtype
def encode_image(self, image):
return self.visual(image.type(self.dtype))
def encode_fq(self, image):
return self.fq_attnpool(image.type(self.dtype))
def forward(self, image, text):
image_features = self.encode_image(image)
text_features = self.encode_text(text)
# normalized features
image_features = image_features / image_features.norm(dim=-1,
keepdim=True)
text_features = text_features / text_features.norm(dim=-1,
keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_image = logit_scale * image_features @ text_features.t()
logits_per_text = logits_per_image.t()
# shape = [global_batch_size, global_batch_size]
return logits_per_image, logits_per_text
def convert_weights(model: nn.Module):
"""Convert applicable model parameters to fp16"""
def _convert_weights_to_fp16(l):
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
l.weight.data = l.weight.data.half()
if l.bias is not None:
l.bias.data = l.bias.data.half()
if isinstance(l, nn.MultiheadAttention):
for attr in [
*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]],
"in_proj_bias", "bias_k", "bias_v"
]:
tensor = getattr(l, attr)
if tensor is not None:
tensor.data = tensor.data.half()
for name in ["text_projection", "proj"]:
if hasattr(l, name):
attr = getattr(l, name)
if attr is not None:
attr.data = attr.data.half()
model.apply(_convert_weights_to_fp16)
class PromptLearner(nn.Module):
def __init__(self, transformer_width, context_length, vocab_size,
transformer_layers, transformer_heads, bert_embed_dim):
super().__init__()
self.transformer_width = transformer_width
self.context_length = context_length
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(self.vocab_size, self.transformer_width)
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask()
)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, bert_embed_dim))
# self.load_from_openai_model(pretrained_model=clip_pretrain)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def init_label_emb(self, labels_path):
label = open(labels_path, 'r').readlines()
# label81 = open(unseen_labels_path, 'r').readlines()
# label1006 = label925 + label81
self.name_lens = [len(_tokenizer.encode(name)) for name in label]
self.label_token = torch.zeros((len(self.name_lens), self.context_length), dtype=torch.long)
for i, c in enumerate(label):
self.label_token[i] = tokenize(f"There is a {c.strip()} in the scene")
self.label_emb = torch.zeros((len(self.name_lens), max(self.name_lens), self.transformer_width))
for i, embed in enumerate(self.token_embedding(self.label_token)):
self.label_emb[i][:self.name_lens[i]] = embed[4:4 + self.name_lens[i]].clone().detach()
# def load_from_openai_model(self, pretrained_model):
# state_dict = clip.load(pretrained_model, jit=False)[0].state_dict()
# load_dict = {}
# for k, v in state_dict.items():
# if not k.startswith("visual") and (
# k not in ["logit_scale", "input_resolution", "context_length", "vocab_size"]):
# load_dict[k] = v
# msg = self.load_state_dict(load_dict)
def load_label_emb(self, label=None):
self.name_lens = [len(_tokenizer.encode(name.split("\t")[-1])) for name in label]
self.label_token = torch.zeros((len(self.name_lens), self.context_length), dtype=torch.long).cuda()
for i, c in enumerate(label):
name = c.split("\t")[-1]
self.label_token[i] = tokenize(f"There is a {name.strip()} in the scene")
self.label_emb = torch.zeros((len(self.name_lens), max(self.name_lens), self.transformer_width)).cuda()
for i, embed in enumerate(self.token_embedding(self.label_token)):
self.label_emb[i][:self.name_lens[i]] = embed[4:4 + self.name_lens[i]].clone().detach()
def forward(self, device):
label_embeds = self.token_embedding(self.label_token.to(device))
for i in range(label_embeds.shape[0]):
label_embeds[i, 4:4 + self.name_lens[i], :] = self.label_emb[i][:self.name_lens[i]]
x = label_embeds + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
res = x[torch.arange(x.shape[0]), self.label_token.argmax(dim=-1)] @ self.text_projection
return res
def build_promptlearner(state_dict: dict):
embed_dim = state_dict["text_projection"].shape[1]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(
set(
k.split(".")[2] for k in state_dict
if k.startswith(f"transformer.resblocks")))
model = PromptLearner(transformer_width, context_length, vocab_size,
transformer_layers, transformer_heads, embed_dim)
# model = PromptLearner(embed_dim, vision_patch_size, context_length, txt_length, vocab_size,
# transformer_width, transformer_heads, transformer_layers)
load_dict = {}
for k, v in state_dict.items():
if not k.startswith("visual") and (
k not in ["logit_scale", "input_resolution", "context_length", "vocab_size"]):
load_dict[k] = v
convert_weights(model)
model.load_state_dict(load_dict, False)
return model
def build_model(state_dict: dict, txt_length: int):
vit = "visual.proj" in state_dict
if vit:
vision_width = state_dict["visual.conv1.weight"].shape[0]
vision_layers = len([
k for k in state_dict.keys()
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")
])
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
grid_size = round(
(state_dict["visual.positional_embedding"].shape[0] - 1)**0.5)
image_resolution = vision_patch_size * grid_size
else:
counts: list = [
len(
set(
k.split(".")[2] for k in state_dict
if k.startswith(f"visual.layer{b}")))
for b in [1, 2, 3, 4]
]
vision_layers = tuple(counts)
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
output_width = round(
(state_dict["visual.attnpool.positional_embedding"].shape[0] -
1)**0.5)
vision_patch_size = None
assert output_width**2 + 1 == state_dict[
"visual.attnpool.positional_embedding"].shape[0]
image_resolution = output_width * 32
vision_heads = vision_width * 32 // 64
embed_dim = state_dict["text_projection"].shape[1]
# context_length = state_dict["positional_embedding"].shape[0]
context_length = txt_length
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(
set(
k.split(".")[2] for k in state_dict
if k.startswith(f"transformer.resblocks")))
model = CLIP(embed_dim, image_resolution, vision_layers, vision_width,
vision_patch_size, context_length, txt_length, vocab_size,
transformer_width, transformer_heads, transformer_layers)
for key in ["input_resolution", "context_length", "vocab_size", 'positional_embedding']:
if key in state_dict:
del state_dict[key]
convert_weights(model)
model.load_state_dict(state_dict, False)
return model.eval(), image_resolution, vision_heads, embed_dim, vision_width, vision_patch_size
def build_lclip_model(state_dict: dict, load_from_clip: bool):
vit = "visual.proj" in state_dict
if vit:
vision_width = state_dict["visual.conv1.weight"].shape[0]
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
image_resolution = vision_patch_size * grid_size
else:
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
vision_layers = tuple(counts)
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
vision_patch_size = None
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
image_resolution = output_width * 32
embed_dim = state_dict["text_projection"].shape[1]
# print(embed_dim)
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")))
model = LCLIP(
embed_dim,
image_resolution, vision_layers, vision_width, vision_patch_size,
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers, load_from_clip
)
for key in ["input_resolution", "context_length", "vocab_size"]:
if key in state_dict:
del state_dict[key]
convert_weights(model)
# model.load_state_dict(state_dict)
model.load_state_dict(state_dict, strict=False)
vision_heads = vision_width // 64
# print(vision_heads)
return model.eval(), image_resolution, vision_heads, embed_dim, vision_width, vision_patch_size
def build_modified_model(state_dict: dict, txt_length: int):
vit = "visual.proj" in state_dict
if vit:
vision_width = state_dict["visual.conv1.weight"].shape[0]
vision_layers = len([
k for k in state_dict.keys()
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")
])
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
grid_size = round(
(state_dict["visual.positional_embedding"].shape[0] - 1)**0.5)
image_resolution = vision_patch_size * grid_size
else:
counts: list = [
len(
set(
k.split(".")[2] for k in state_dict
if k.startswith(f"visual.layer{b}")))
for b in [1, 2, 3, 4]
]
vision_layers = tuple(counts)
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
output_width = round(
(state_dict["visual.attnpool.positional_embedding"].shape[0] -
1)**0.5)
vision_patch_size = None
assert output_width**2 + 1 == state_dict[
"visual.attnpool.positional_embedding"].shape[0]
image_resolution = output_width * 32
embed_dim = state_dict["text_projection"].shape[1]
model = zhCLIP(embed_dim, image_resolution, vision_layers, vision_width,
vision_patch_size)
for key in ["input_resolution", "context_length", "vocab_size"]:
if key in state_dict:
del state_dict[key]
convert_weights(model)
model.load_state_dict(state_dict, False)
return model.eval()