Spaces:
Sleeping
Sleeping
Upload 41 files
Browse files- cisen/config/cisen_r0.9_fpn.yaml +76 -0
- cisen/engine/__init__.py +0 -0
- cisen/engine/__pycache__/__init__.cpython-38.pyc +0 -0
- cisen/engine/__pycache__/engine.cpython-38.pyc +0 -0
- cisen/engine/demo.py +0 -0
- cisen/engine/engine.py +0 -0
- cisen/model/__init__.py +354 -0
- cisen/model/__pycache__/__init__.cpython-38.pyc +0 -0
- cisen/model/__pycache__/clip.cpython-38.pyc +0 -0
- cisen/model/__pycache__/layers.cpython-38.pyc +0 -0
- cisen/model/__pycache__/segmenter.cpython-38.pyc +0 -0
- cisen/model/builder.py +25 -0
- cisen/model/clip.py +1207 -0
- cisen/model/layers.py +633 -0
- cisen/model/segmenter.py +2045 -0
- cisen/utils/__pycache__/config.cpython-38.pyc +0 -0
- cisen/utils/__pycache__/dataset.cpython-38.pyc +0 -0
- cisen/utils/bpe_simple_vocab_16e6.txt.gz +3 -0
- cisen/utils/config.py +157 -0
- cisen/utils/dataset.py +478 -0
- cisen/utils/hash.py +314 -0
- cisen/utils/misc.py +444 -0
- cisen/utils/simple_tokenizer.py +132 -0
- cisen_r0.9_fpn.yaml +76 -0
- example_image/sample16_98.jpg +0 -0
- example_image/sample21_1524.jpg +0 -0
- example_image/sample21_2180.jpg +0 -0
- example_image/sample21_2392.jpg +0 -0
- example_image/sample21_2593.jpg +0 -0
- example_image/sample32_1642.jpg +0 -0
- example_image/sample40_1027.jpg +0 -0
- example_image/sample40_2483.jpg +0 -0
- example_image/sample42_2609.jpg +0 -0
- example_image/sample44_1090.jpg +0 -0
- example_image/sample44_1592.jpg +0 -0
- example_image/sample44_2048.jpg +0 -0
- example_image/sample52_812.jpg +0 -0
- example_image/sample57_1854.jpg +0 -0
- example_image/sample57_268.jpg +0 -0
- get_data_by_image_id.py +111 -0
- requirements.txt +20 -0
cisen/config/cisen_r0.9_fpn.yaml
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DATA:
|
2 |
+
dataset: classification
|
3 |
+
dataset_json_file: /data02/xy/dataEngine/json_data/LuojiaHOG(test)_.json
|
4 |
+
# dataset_json_file: /data02/xy/dataEngine/json_data/merged_output_combined_9w_resplit.json
|
5 |
+
# dataset_json_file: /data02/xy/dataEngine/json_data/merged_output_combined_9w_resplit.json
|
6 |
+
exp_name: classifi
|
7 |
+
ratio: 0
|
8 |
+
dataset_train_split: 0.6
|
9 |
+
dataset_query_split: 0.2
|
10 |
+
imgs_folder: /data02/xy/Clip-hash/datasets/image/
|
11 |
+
label_path: /data02/xy/Clip-hash/labels.txt
|
12 |
+
num_classes: 10
|
13 |
+
# num_classes: 131
|
14 |
+
TRAIN:
|
15 |
+
# Base Arch
|
16 |
+
# clip_pretrain: /data02/xy/Clip-hash/pretrain/RS5M_ViT-B-32.pt
|
17 |
+
clip_pretrain: ./cisen/pretrain/RS5M_ViT-B-32.pt
|
18 |
+
model_name: ViT-B-32
|
19 |
+
ckpt_path: /data02/xy/GeoRSCLIP/codebase/inference/pretrain/RS5M_ViT-B-32.pt
|
20 |
+
input_size: 224
|
21 |
+
word_len: 328
|
22 |
+
word_dim: 1024
|
23 |
+
vis_dim: 512
|
24 |
+
fpn_in: [ 512, 768, 768 ]
|
25 |
+
fpn_out: [ 768, 768, 768, 512 ]
|
26 |
+
sync_bn: True
|
27 |
+
# Decoder
|
28 |
+
num_layers: 3
|
29 |
+
num_head: 8
|
30 |
+
dim_ffn: 2048
|
31 |
+
dropout: 0.1
|
32 |
+
intermediate: False
|
33 |
+
# Training Setting
|
34 |
+
workers: 32 # data loader workers
|
35 |
+
workers_val: 16
|
36 |
+
epochs: 50
|
37 |
+
milestones: [50]
|
38 |
+
start_epoch: 0
|
39 |
+
batch_size: 256 # batch size for training
|
40 |
+
batch_size_val: 256 # batch size for validation during training, memory and speed tradeoff 11111
|
41 |
+
base_lr: 0.0001
|
42 |
+
min_lr: 0.00000001
|
43 |
+
lr_decay: 0.5
|
44 |
+
lr_multi: 0.1
|
45 |
+
weight_decay: 0.
|
46 |
+
max_norm: 0.
|
47 |
+
manual_seed: 0
|
48 |
+
print_freq: 1
|
49 |
+
lamda1: 0.5
|
50 |
+
lamda2: 0.5
|
51 |
+
beta1: 0.5
|
52 |
+
beta2: 0.5
|
53 |
+
eta: 0.2
|
54 |
+
warmup_epochs: 0
|
55 |
+
contrastive: [0.4, 0.3, 0.3]
|
56 |
+
# Resume & Save
|
57 |
+
|
58 |
+
output_folder: /data02/xy/Clip-hash/exp/
|
59 |
+
save_freq: 1
|
60 |
+
weight: # path to initial weight (default: none)
|
61 |
+
resume: False # path to latest checkpoint (default: none)
|
62 |
+
evaluate: True # evaluate on validation set, extra gpu memory needed and small batch_size_val is recommend
|
63 |
+
Distributed:
|
64 |
+
dist_url: tcp://localhost:3693
|
65 |
+
dist_backend: 'nccl'
|
66 |
+
multiprocessing_distributed: True
|
67 |
+
world_size: 1
|
68 |
+
rank: 0
|
69 |
+
TEST:
|
70 |
+
test_split: val-test
|
71 |
+
gpu : [0]
|
72 |
+
test_lmdb: /data02/xy/Clip-hash/datasets/lmdb/refcoco/val.lmdb
|
73 |
+
visualize: False
|
74 |
+
topk: 5
|
75 |
+
test_batch_size: 256 #1111111
|
76 |
+
val_batch_size: 1
|
cisen/engine/__init__.py
ADDED
File without changes
|
cisen/engine/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (133 Bytes). View file
|
|
cisen/engine/__pycache__/engine.cpython-38.pyc
ADDED
Binary file (7.95 kB). View file
|
|
cisen/engine/demo.py
ADDED
File without changes
|
cisen/engine/engine.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cisen/model/__init__.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .segmenter import CRIS, CISEN, Clip_hash_model, zh_clip, poi_clip, Clip_model, CISEN_vit, CISEN_rsvit, CISEN_new, CISEN_rsvit_classification, CISEN_lclip
|
2 |
+
from .segmenter import *
|
3 |
+
from loguru import logger
|
4 |
+
from transformers import AlignProcessor, AlignModel
|
5 |
+
# def build_segmenter(args):
|
6 |
+
# model = CRIS(args)
|
7 |
+
# backbone = []
|
8 |
+
# backbone_no_decay = []
|
9 |
+
# head = []
|
10 |
+
# for k, v in model.named_parameters():
|
11 |
+
# if k.startswith('backbone') and 'positional_embedding' not in k:
|
12 |
+
# backbone.append(v)
|
13 |
+
# elif 'positional_embedding' in k:
|
14 |
+
# backbone_no_decay.append(v)
|
15 |
+
# else:
|
16 |
+
# head.append(v)
|
17 |
+
# print('Backbone with decay: {}, Backbone without decay: {}, Head: {}'.format(
|
18 |
+
# len(backbone), len(backbone_no_decay), len(head)))
|
19 |
+
# param_list = [{
|
20 |
+
# 'params': backbone,
|
21 |
+
# 'initial_lr': args.lr_multi * args.base_lr
|
22 |
+
# }, {
|
23 |
+
# 'params': backbone_no_decay,
|
24 |
+
# 'initial_lr': args.lr_multi * args.base_lr,
|
25 |
+
# 'weight_decay': 0
|
26 |
+
# }, {
|
27 |
+
# 'params': head,
|
28 |
+
# 'initial_lr': args.base_lr
|
29 |
+
# }]
|
30 |
+
# return model, param_list
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
def build_CISEN(args, stage):
|
35 |
+
model = CISEN_new(args)
|
36 |
+
backbone = []
|
37 |
+
head = []
|
38 |
+
ADP = []
|
39 |
+
ADP_t = []
|
40 |
+
fuse = []
|
41 |
+
name = []
|
42 |
+
for k, v in model.named_parameters():
|
43 |
+
if k.startswith('backbone') and 'backbone.positional_embedding' not in k:
|
44 |
+
# if k.startswith('backbone'):
|
45 |
+
v.requires_grad = False
|
46 |
+
backbone.append(v)
|
47 |
+
elif k.startswith('ADP'):
|
48 |
+
# v.requires_grad = False
|
49 |
+
ADP.append(v)
|
50 |
+
elif k.startswith('FPN'):
|
51 |
+
fuse.append(v)
|
52 |
+
elif k.startswith('gap'):
|
53 |
+
fuse.append(v)
|
54 |
+
elif k.startswith('ADP_t'):
|
55 |
+
ADP_t.append(v)
|
56 |
+
else:
|
57 |
+
head.append(v)
|
58 |
+
name.append(k)
|
59 |
+
# logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
60 |
+
# param_list = [{
|
61 |
+
# 'params': backbone,
|
62 |
+
# 'initial_lr': args.lr_multi * float(args.base_lr)
|
63 |
+
# }, {
|
64 |
+
# 'params': head,
|
65 |
+
# 'initial_lr': args.base_lr
|
66 |
+
# }, {
|
67 |
+
# 'params': proj,
|
68 |
+
# 'initial_lr': args.base_lr
|
69 |
+
# }]
|
70 |
+
if stage == '1st':
|
71 |
+
param_list = [{
|
72 |
+
'params': ADP,
|
73 |
+
'initial_lr': args.base_lr
|
74 |
+
},{
|
75 |
+
'params': head,
|
76 |
+
'initial_lr': args.base_lr
|
77 |
+
}]
|
78 |
+
elif stage == '2nd':
|
79 |
+
param_list = [{
|
80 |
+
'params': fuse,
|
81 |
+
'initial_lr': args.base_lr
|
82 |
+
}]
|
83 |
+
elif stage == '4th':
|
84 |
+
param_list = [{
|
85 |
+
'params': fuse,
|
86 |
+
'initial_lr': args.base_lr
|
87 |
+
}]
|
88 |
+
elif stage == '5th':
|
89 |
+
param_list = [{
|
90 |
+
# 'params': ADP,
|
91 |
+
# 'initial_lr': args.base_lr
|
92 |
+
# },{
|
93 |
+
# 'params': ADP_t,
|
94 |
+
# 'initial_lr': args.base_lr
|
95 |
+
# },{
|
96 |
+
'params': fuse,
|
97 |
+
'initial_lr': args.base_lr
|
98 |
+
}]
|
99 |
+
else:
|
100 |
+
print('stage should be either 1st or 2nd')
|
101 |
+
return model, param_list
|
102 |
+
|
103 |
+
def build_CISEN_lclip(args, stage):
|
104 |
+
model = CISEN_lclip(args)
|
105 |
+
backbone = []
|
106 |
+
head = []
|
107 |
+
ADP = []
|
108 |
+
ADP_t = []
|
109 |
+
fuse = []
|
110 |
+
name = []
|
111 |
+
for k, v in model.named_parameters():
|
112 |
+
# if k.startswith('backbone') and 'backbone.positional_embedding' not in k:
|
113 |
+
if k.startswith('backbone'):
|
114 |
+
v.requires_grad = False
|
115 |
+
backbone.append(v)
|
116 |
+
elif k.startswith('ADP'):
|
117 |
+
# v.requires_grad = False
|
118 |
+
ADP.append(v)
|
119 |
+
elif k.startswith('FPN'):
|
120 |
+
fuse.append(v)
|
121 |
+
elif k.startswith('gap'):
|
122 |
+
fuse.append(v)
|
123 |
+
elif k.startswith('ADP_t'):
|
124 |
+
ADP_t.append(v)
|
125 |
+
else:
|
126 |
+
head.append(v)
|
127 |
+
name.append(k)
|
128 |
+
# logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
129 |
+
# param_list = [{
|
130 |
+
# 'params': backbone,
|
131 |
+
# 'initial_lr': args.lr_multi * float(args.base_lr)
|
132 |
+
# }, {
|
133 |
+
# 'params': head,
|
134 |
+
# 'initial_lr': args.base_lr
|
135 |
+
# }, {
|
136 |
+
# 'params': proj,
|
137 |
+
# 'initial_lr': args.base_lr
|
138 |
+
# }]
|
139 |
+
if stage == '1st':
|
140 |
+
param_list = [{
|
141 |
+
'params': ADP,
|
142 |
+
'initial_lr': args.base_lr
|
143 |
+
},{
|
144 |
+
'params': head,
|
145 |
+
'initial_lr': args.base_lr
|
146 |
+
}]
|
147 |
+
elif stage == '2nd':
|
148 |
+
param_list = [{
|
149 |
+
'params': fuse,
|
150 |
+
'initial_lr': args.base_lr
|
151 |
+
}]
|
152 |
+
elif stage == '4th':
|
153 |
+
param_list = [{
|
154 |
+
'params': fuse,
|
155 |
+
'initial_lr': args.base_lr
|
156 |
+
}]
|
157 |
+
elif stage == '5th':
|
158 |
+
param_list = [{
|
159 |
+
# 'params': ADP,
|
160 |
+
# 'initial_lr': args.base_lr
|
161 |
+
# },{
|
162 |
+
# 'params': ADP_t,
|
163 |
+
# 'initial_lr': args.base_lr
|
164 |
+
# },{
|
165 |
+
'params': fuse,
|
166 |
+
'initial_lr': args.base_lr
|
167 |
+
}]
|
168 |
+
else:
|
169 |
+
print('stage should be either 1st or 2nd')
|
170 |
+
return model, param_list
|
171 |
+
|
172 |
+
def build_CISEN_vit(args, stage):
|
173 |
+
model = CISEN_rsvit(args)
|
174 |
+
backbone = []
|
175 |
+
head = []
|
176 |
+
ADP = []
|
177 |
+
ADP_t = []
|
178 |
+
fuse = []
|
179 |
+
name = []
|
180 |
+
for k, v in model.named_parameters():
|
181 |
+
# if k.startswith('backbone') and 'backbone.positional_embedding' not in k:
|
182 |
+
if k.startswith('backbone'):
|
183 |
+
v.requires_grad = False
|
184 |
+
backbone.append(v)
|
185 |
+
elif k.startswith('ADP'):
|
186 |
+
v.requires_grad = False
|
187 |
+
ADP.append(v)
|
188 |
+
elif k.startswith('FPN'):
|
189 |
+
# v.requires_grad = False
|
190 |
+
fuse.append(v)
|
191 |
+
elif k.startswith('ms_adaptor'):
|
192 |
+
# v.requires_grad = False
|
193 |
+
fuse.append(v)
|
194 |
+
else:
|
195 |
+
head.append(v)
|
196 |
+
name.append(k)
|
197 |
+
# logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
198 |
+
# param_list = [{
|
199 |
+
# 'params': backbone,
|
200 |
+
# 'initial_lr': args.lr_multi * float(args.base_lr)
|
201 |
+
# }, {
|
202 |
+
# 'params': head,
|
203 |
+
# 'initial_lr': args.base_lr
|
204 |
+
# }, {
|
205 |
+
# 'params': proj,
|
206 |
+
# 'initial_lr': args.base_lr
|
207 |
+
# }]
|
208 |
+
if stage == '1st':
|
209 |
+
param_list = [{
|
210 |
+
'params': ADP,
|
211 |
+
'initial_lr': args.base_lr
|
212 |
+
},{
|
213 |
+
'params': head,
|
214 |
+
'initial_lr': args.base_lr
|
215 |
+
}]
|
216 |
+
elif stage == '2nd':
|
217 |
+
param_list = [{
|
218 |
+
'params': fuse,
|
219 |
+
'initial_lr': args.base_lr
|
220 |
+
}]
|
221 |
+
elif stage == '4th':
|
222 |
+
param_list = [{
|
223 |
+
'params': fuse,
|
224 |
+
'initial_lr': args.base_lr
|
225 |
+
}]
|
226 |
+
elif stage == '5th':
|
227 |
+
param_list = [{
|
228 |
+
# 'params': ADP,
|
229 |
+
# 'initial_lr': args.base_lr
|
230 |
+
# },{
|
231 |
+
# 'params': ADP_t,
|
232 |
+
# 'initial_lr': args.base_lr
|
233 |
+
# },{
|
234 |
+
'params': fuse,
|
235 |
+
'initial_lr': args.base_lr
|
236 |
+
}]
|
237 |
+
else:
|
238 |
+
print('stage should be either 1st or 2nd')
|
239 |
+
return model, param_list
|
240 |
+
|
241 |
+
def build_CISEN_vit_classification(args, stage):
|
242 |
+
model = CISEN_rsvit_classification(args)
|
243 |
+
|
244 |
+
# logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
245 |
+
# param_list = [{
|
246 |
+
# 'params': backbone,
|
247 |
+
# 'initial_lr': args.lr_multi * float(args.base_lr)
|
248 |
+
# }, {
|
249 |
+
# 'params': head,
|
250 |
+
# 'initial_lr': args.base_lr
|
251 |
+
# }, {
|
252 |
+
# 'params': proj,
|
253 |
+
# 'initial_lr': args.base_lr
|
254 |
+
# }]
|
255 |
+
|
256 |
+
return model
|
257 |
+
|
258 |
+
def build_segmenter(args):
|
259 |
+
model = CRIS(args)
|
260 |
+
backbone = []
|
261 |
+
head = []
|
262 |
+
for k, v in model.named_parameters():
|
263 |
+
if k.startswith('backbone') and 'positional_embedding' not in k:
|
264 |
+
backbone.append(v)
|
265 |
+
elif k.startswith('Label_encoder') and "token_embedding" not in k:
|
266 |
+
v.requires_grad = False
|
267 |
+
else:
|
268 |
+
head.append(v)
|
269 |
+
|
270 |
+
logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
271 |
+
param_list = [{
|
272 |
+
'params': backbone,
|
273 |
+
'initial_lr': args.lr_multi * float(args.base_lr)
|
274 |
+
}, {
|
275 |
+
'params': head,
|
276 |
+
'initial_lr': args.base_lr
|
277 |
+
}]
|
278 |
+
return model, param_list
|
279 |
+
|
280 |
+
def build_hash(args):
|
281 |
+
model = Clip_hash_model(args)
|
282 |
+
backbone = []
|
283 |
+
head = []
|
284 |
+
for k, v in model.named_parameters():
|
285 |
+
if k.startswith('backbone') and 'positional_embedding' not in k:
|
286 |
+
backbone.append(v)
|
287 |
+
else:
|
288 |
+
head.append(v)
|
289 |
+
logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
290 |
+
param_list = [{
|
291 |
+
'params': backbone,
|
292 |
+
'initial_lr': args.lr_multi * args.base_lr
|
293 |
+
}, {
|
294 |
+
'params': head,
|
295 |
+
'initial_lr': args.base_lr
|
296 |
+
}]
|
297 |
+
return model, param_list
|
298 |
+
|
299 |
+
def build_zh_segmenter(args):
|
300 |
+
model = zh_clip(args)
|
301 |
+
backbone = []
|
302 |
+
head = []
|
303 |
+
for k, v in model.named_parameters():
|
304 |
+
if k.startswith('backbone') and 'positional_embedding' not in k:
|
305 |
+
backbone.append(v)
|
306 |
+
else:
|
307 |
+
head.append(v)
|
308 |
+
logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
309 |
+
param_list = [{
|
310 |
+
'params': backbone,
|
311 |
+
'initial_lr': args.lr_multi * args.base_lr
|
312 |
+
}, {
|
313 |
+
'params': head,
|
314 |
+
'initial_lr': args.base_lr
|
315 |
+
}]
|
316 |
+
return model, param_list
|
317 |
+
|
318 |
+
def build_poi_segmenter(args):
|
319 |
+
model = poi_clip(args)
|
320 |
+
backbone = []
|
321 |
+
head = []
|
322 |
+
for k, v in model.named_parameters():
|
323 |
+
if k.startswith('backbone') and 'positional_embedding' not in k:
|
324 |
+
backbone.append(v)
|
325 |
+
else:
|
326 |
+
head.append(v)
|
327 |
+
logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
328 |
+
param_list = [{
|
329 |
+
'params': backbone,
|
330 |
+
'initial_lr': args.lr_multi * args.base_lr
|
331 |
+
}, {
|
332 |
+
'params': head,
|
333 |
+
'initial_lr': args.base_lr
|
334 |
+
}]
|
335 |
+
return model, param_list
|
336 |
+
|
337 |
+
def build_clip(args):
|
338 |
+
model = Clip_model(args)
|
339 |
+
backbone = []
|
340 |
+
head = []
|
341 |
+
for k, v in model.named_parameters():
|
342 |
+
if k.startswith('backbone') and 'positional_embedding' not in k:
|
343 |
+
backbone.append(v)
|
344 |
+
else:
|
345 |
+
head.append(v)
|
346 |
+
logger.info('Backbone with decay={}, Head={}'.format(len(backbone), len(head)))
|
347 |
+
param_list = [{
|
348 |
+
'params': backbone,
|
349 |
+
'initial_lr': args.lr_multi * args.base_lr
|
350 |
+
}, {
|
351 |
+
'params': head,
|
352 |
+
'initial_lr': args.base_lr
|
353 |
+
}]
|
354 |
+
return model, param_list
|
cisen/model/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (695 Bytes). View file
|
|
cisen/model/__pycache__/clip.cpython-38.pyc
ADDED
Binary file (16.7 kB). View file
|
|
cisen/model/__pycache__/layers.cpython-38.pyc
ADDED
Binary file (9.07 kB). View file
|
|
cisen/model/__pycache__/segmenter.cpython-38.pyc
ADDED
Binary file (1.66 kB). View file
|
|
cisen/model/builder.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
# Copyright (c) 2022, Huawei Technologies Co., Ltd. All rights reserved.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
from mmcv import Registry
|
18 |
+
from mmcv import build_from_cfg
|
19 |
+
|
20 |
+
MODELS = Registry('model')
|
21 |
+
|
22 |
+
|
23 |
+
def build_model(config):
|
24 |
+
|
25 |
+
return build_from_cfg(config, MODELS)
|
cisen/model/clip.py
ADDED
@@ -0,0 +1,1207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Tuple, Union
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch import nn
|
8 |
+
from ..utils.dataset import tokenize
|
9 |
+
from ..utils.simple_tokenizer import SimpleTokenizer as _Tokenizer
|
10 |
+
_tokenizer = _Tokenizer()
|
11 |
+
|
12 |
+
|
13 |
+
class Bottleneck(nn.Module):
|
14 |
+
expansion = 4
|
15 |
+
|
16 |
+
def __init__(self, inplanes, planes, stride=1):
|
17 |
+
super().__init__()
|
18 |
+
|
19 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
20 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
21 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
22 |
+
|
23 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
24 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
25 |
+
|
26 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
27 |
+
|
28 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
29 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
30 |
+
|
31 |
+
self.relu = nn.ReLU(inplace=True)
|
32 |
+
self.downsample = None
|
33 |
+
self.stride = stride
|
34 |
+
|
35 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
36 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
37 |
+
self.downsample = nn.Sequential(
|
38 |
+
OrderedDict([("-1", nn.AvgPool2d(stride)),
|
39 |
+
("0",
|
40 |
+
nn.Conv2d(inplanes,
|
41 |
+
planes * self.expansion,
|
42 |
+
1,
|
43 |
+
stride=1,
|
44 |
+
bias=False)),
|
45 |
+
("1", nn.BatchNorm2d(planes * self.expansion))]))
|
46 |
+
|
47 |
+
def forward(self, x: torch.Tensor):
|
48 |
+
identity = x
|
49 |
+
|
50 |
+
out = self.relu(self.bn1(self.conv1(x)))
|
51 |
+
out = self.relu(self.bn2(self.conv2(out)))
|
52 |
+
out = self.avgpool(out)
|
53 |
+
out = self.bn3(self.conv3(out))
|
54 |
+
|
55 |
+
if self.downsample is not None:
|
56 |
+
identity = self.downsample(x)
|
57 |
+
|
58 |
+
out += identity
|
59 |
+
out = self.relu(out)
|
60 |
+
return out
|
61 |
+
|
62 |
+
|
63 |
+
"""
|
64 |
+
attenpool used in CRIS (output: C1/C2/C3 3 deiffent feature maps)
|
65 |
+
"""
|
66 |
+
class ModifiedAttentionPool2d(nn.Module):
|
67 |
+
def __init__(self,
|
68 |
+
spacial_dim: int,
|
69 |
+
embed_dim: int,
|
70 |
+
num_heads: int,
|
71 |
+
output_dim: int = None):
|
72 |
+
super().__init__()
|
73 |
+
self.spacial_dim = spacial_dim
|
74 |
+
self.positional_embedding = nn.Parameter(
|
75 |
+
torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5)
|
76 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
77 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
78 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
79 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
80 |
+
self.num_heads = num_heads
|
81 |
+
# residual
|
82 |
+
self.connect = nn.Sequential(
|
83 |
+
nn.Conv2d(embed_dim, output_dim, 1, stride=1, bias=False),
|
84 |
+
nn.BatchNorm2d(output_dim))
|
85 |
+
|
86 |
+
def resize_pos_embed(self, pos_embed, input_shpae):
|
87 |
+
"""Resize pos_embed weights.
|
88 |
+
Resize pos_embed using bicubic interpolate method.
|
89 |
+
Args:
|
90 |
+
pos_embed (torch.Tensor): Position embedding weights.
|
91 |
+
input_shpae (tuple): Tuple for (downsampled input image height,
|
92 |
+
downsampled input image width).
|
93 |
+
pos_shape (tuple): The resolution of downsampled origin training
|
94 |
+
image.
|
95 |
+
mode (str): Algorithm used for upsampling:
|
96 |
+
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
|
97 |
+
``'trilinear'``. Default: ``'nearest'``
|
98 |
+
Return:
|
99 |
+
torch.Tensor: The resized pos_embed of shape [B, C, L_new]
|
100 |
+
"""
|
101 |
+
assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]'
|
102 |
+
pos_h = pos_w = self.spacial_dim
|
103 |
+
cls_token_weight = pos_embed[:, 0]
|
104 |
+
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):]
|
105 |
+
pos_embed_weight = pos_embed_weight.reshape(
|
106 |
+
1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2)
|
107 |
+
pos_embed_weight = F.interpolate(pos_embed_weight,
|
108 |
+
size=input_shpae,
|
109 |
+
align_corners=False,
|
110 |
+
mode='bicubic')
|
111 |
+
cls_token_weight = cls_token_weight.unsqueeze(1)
|
112 |
+
pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2)
|
113 |
+
# pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1)
|
114 |
+
return pos_embed_weight.transpose(-2, -1)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
B, C, H, W = x.size()
|
118 |
+
res = self.connect(x)
|
119 |
+
x = x.reshape(B, C, -1) # NC(HW)
|
120 |
+
# x = torch.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(1+HW)
|
121 |
+
pos_embed = self.positional_embedding.unsqueeze(0)
|
122 |
+
pos_embed = self.resize_pos_embed(pos_embed, (H, W)) # NC(HW)
|
123 |
+
x = x + pos_embed.to(x.dtype) # NC(HW)
|
124 |
+
x = x.permute(2, 0, 1) # (HW)NC
|
125 |
+
x, _ = F.multi_head_attention_forward(
|
126 |
+
query=x,
|
127 |
+
key=x,
|
128 |
+
value=x,
|
129 |
+
embed_dim_to_check=x.shape[-1],
|
130 |
+
num_heads=self.num_heads,
|
131 |
+
q_proj_weight=self.q_proj.weight,
|
132 |
+
k_proj_weight=self.k_proj.weight,
|
133 |
+
v_proj_weight=self.v_proj.weight,
|
134 |
+
in_proj_weight=None,
|
135 |
+
in_proj_bias=torch.cat(
|
136 |
+
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
137 |
+
bias_k=None,
|
138 |
+
bias_v=None,
|
139 |
+
add_zero_attn=False,
|
140 |
+
dropout_p=0,
|
141 |
+
out_proj_weight=self.c_proj.weight,
|
142 |
+
out_proj_bias=self.c_proj.bias,
|
143 |
+
use_separate_proj_weight=True,
|
144 |
+
training=self.training,
|
145 |
+
need_weights=False)
|
146 |
+
xt = x[0]
|
147 |
+
x = x.permute(1, 2, 0).reshape(B, -1, H, W)
|
148 |
+
x = x + res
|
149 |
+
x = F.relu(x, True)
|
150 |
+
|
151 |
+
return x, xt
|
152 |
+
|
153 |
+
|
154 |
+
"""
|
155 |
+
attenpool used in Clip (output: a tensor (b, dim) image encoding)
|
156 |
+
"""
|
157 |
+
class AttentionPool2d(nn.Module):
|
158 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
159 |
+
super().__init__()
|
160 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
161 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
162 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
163 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
164 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
165 |
+
self.num_heads = num_heads
|
166 |
+
|
167 |
+
def forward(self, x):
|
168 |
+
x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
|
169 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
170 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
171 |
+
x, _ = F.multi_head_attention_forward(
|
172 |
+
query=x[:1], key=x, value=x,
|
173 |
+
embed_dim_to_check=x.shape[-1],
|
174 |
+
num_heads=self.num_heads,
|
175 |
+
q_proj_weight=self.q_proj.weight,
|
176 |
+
k_proj_weight=self.k_proj.weight,
|
177 |
+
v_proj_weight=self.v_proj.weight,
|
178 |
+
in_proj_weight=None,
|
179 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
180 |
+
bias_k=None,
|
181 |
+
bias_v=None,
|
182 |
+
add_zero_attn=False,
|
183 |
+
dropout_p=0,
|
184 |
+
out_proj_weight=self.c_proj.weight,
|
185 |
+
out_proj_bias=self.c_proj.bias,
|
186 |
+
use_separate_proj_weight=True,
|
187 |
+
training=self.training,
|
188 |
+
need_weights=False
|
189 |
+
)
|
190 |
+
return x.squeeze(0)
|
191 |
+
|
192 |
+
|
193 |
+
class ModifiedResNet(nn.Module):
|
194 |
+
"""
|
195 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
196 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
197 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
198 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
199 |
+
"""
|
200 |
+
def __init__(self,
|
201 |
+
layers,
|
202 |
+
output_dim,
|
203 |
+
heads,
|
204 |
+
input_resolution=224,
|
205 |
+
width=64):
|
206 |
+
super().__init__()
|
207 |
+
self.output_dim = output_dim
|
208 |
+
self.input_resolution = input_resolution
|
209 |
+
|
210 |
+
# the 3-layer stem
|
211 |
+
self.conv1 = nn.Conv2d(3,
|
212 |
+
width // 2,
|
213 |
+
kernel_size=3,
|
214 |
+
stride=2,
|
215 |
+
padding=1,
|
216 |
+
bias=False)
|
217 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
218 |
+
self.conv2 = nn.Conv2d(width // 2,
|
219 |
+
width // 2,
|
220 |
+
kernel_size=3,
|
221 |
+
padding=1,
|
222 |
+
bias=False)
|
223 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
224 |
+
self.conv3 = nn.Conv2d(width // 2,
|
225 |
+
width,
|
226 |
+
kernel_size=3,
|
227 |
+
padding=1,
|
228 |
+
bias=False)
|
229 |
+
self.bn3 = nn.BatchNorm2d(width)
|
230 |
+
self.avgpool = nn.AvgPool2d(2)
|
231 |
+
self.relu = nn.ReLU(inplace=True)
|
232 |
+
|
233 |
+
# residual layers
|
234 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
235 |
+
self.layer1 = self._make_layer(width, layers[0])
|
236 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
237 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
238 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
239 |
+
|
240 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
241 |
+
|
242 |
+
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim,
|
243 |
+
heads, output_dim)
|
244 |
+
# self.modifiedattnpool = ModifiedAttentionPool2d(input_resolution // 32, embed_dim,
|
245 |
+
# heads, output_dim)
|
246 |
+
|
247 |
+
def _make_layer(self, planes, blocks, stride=1):
|
248 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
249 |
+
|
250 |
+
self._inplanes = planes * Bottleneck.expansion
|
251 |
+
for _ in range(1, blocks):
|
252 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
253 |
+
|
254 |
+
return nn.Sequential(*layers)
|
255 |
+
|
256 |
+
def forward(self, x):
|
257 |
+
def stem(x):
|
258 |
+
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2),
|
259 |
+
(self.conv3, self.bn3)]:
|
260 |
+
|
261 |
+
x = self.relu(bn(conv(x)))
|
262 |
+
|
263 |
+
x = self.avgpool(x)
|
264 |
+
return x
|
265 |
+
|
266 |
+
x = x.type(self.conv1.weight.dtype)
|
267 |
+
x = stem(x)
|
268 |
+
|
269 |
+
x = self.layer1(x)
|
270 |
+
|
271 |
+
x2 = self.layer2(x)
|
272 |
+
|
273 |
+
x3 = self.layer3(x2)
|
274 |
+
x4 = self.layer4(x3)
|
275 |
+
x5 = self.attnpool(x4)
|
276 |
+
# x4 = self.modifiedattnpool(x4)
|
277 |
+
|
278 |
+
return (x2, x3, x4), x5
|
279 |
+
|
280 |
+
|
281 |
+
class LayerNorm(nn.LayerNorm):
|
282 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
283 |
+
def forward(self, x: torch.Tensor):
|
284 |
+
orig_type = x.dtype
|
285 |
+
ret = super().forward(x.type(torch.float32))
|
286 |
+
return ret.type(orig_type)
|
287 |
+
|
288 |
+
|
289 |
+
class QuickGELU(nn.Module):
|
290 |
+
def forward(self, x: torch.Tensor):
|
291 |
+
return x * torch.sigmoid(1.702 * x)
|
292 |
+
|
293 |
+
|
294 |
+
class ResidualAttentionBlock(nn.Module):
|
295 |
+
def __init__(self,
|
296 |
+
d_model: int,
|
297 |
+
n_head: int,
|
298 |
+
attn_mask: torch.Tensor = None):
|
299 |
+
super().__init__()
|
300 |
+
# print(n_head)
|
301 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
302 |
+
self.ln_1 = LayerNorm(d_model)
|
303 |
+
self.mlp = nn.Sequential(
|
304 |
+
OrderedDict([("c_fc", nn.Linear(d_model, d_model * 4)),
|
305 |
+
("gelu", QuickGELU()),
|
306 |
+
("c_proj", nn.Linear(d_model * 4, d_model))]))
|
307 |
+
self.ln_2 = LayerNorm(d_model)
|
308 |
+
self.attn_mask = attn_mask
|
309 |
+
|
310 |
+
def attention(self, x: torch.Tensor):
|
311 |
+
self.attn_mask = self.attn_mask.to(
|
312 |
+
dtype=x.dtype,
|
313 |
+
device=x.device) if self.attn_mask is not None else None
|
314 |
+
res = self.attn(x, x, x, need_weights=False,
|
315 |
+
attn_mask=self.attn_mask)[0]
|
316 |
+
# print(res)
|
317 |
+
return res
|
318 |
+
|
319 |
+
def forward(self, x: torch.Tensor):
|
320 |
+
# a = self.attention(self.ln_1(x))
|
321 |
+
x = x + self.attention(self.ln_1(x))
|
322 |
+
|
323 |
+
x = x + self.mlp(self.ln_2(x))
|
324 |
+
return x
|
325 |
+
|
326 |
+
class Transformer(nn.Module):
|
327 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
328 |
+
super().__init__()
|
329 |
+
self.width = width
|
330 |
+
self.layers = layers
|
331 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
332 |
+
|
333 |
+
def forward(self, x: torch.Tensor):
|
334 |
+
return self.resblocks(x)
|
335 |
+
|
336 |
+
class ViTTransformer(nn.Module):
|
337 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
338 |
+
super().__init__()
|
339 |
+
self.width = width
|
340 |
+
self.layers = layers
|
341 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
342 |
+
|
343 |
+
def forward(self, x: torch.Tensor):
|
344 |
+
outputs = []
|
345 |
+
i = 1
|
346 |
+
for block in self.resblocks:
|
347 |
+
x = block(x)
|
348 |
+
if i > 7:
|
349 |
+
outputs.append(x)
|
350 |
+
i = i + 1
|
351 |
+
return outputs
|
352 |
+
|
353 |
+
|
354 |
+
class VisionTransformer(nn.Module):
|
355 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int,
|
356 |
+
layers: int, heads: int, output_dim: int):
|
357 |
+
super().__init__()
|
358 |
+
self.input_resolution = input_resolution
|
359 |
+
self.output_dim = output_dim
|
360 |
+
self.conv1 = nn.Conv2d(in_channels=3,
|
361 |
+
out_channels=width,
|
362 |
+
kernel_size=patch_size,
|
363 |
+
stride=patch_size,
|
364 |
+
bias=False)
|
365 |
+
|
366 |
+
scale = width ** -0.5
|
367 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
368 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn(
|
369 |
+
(input_resolution // patch_size) ** 2 + 1, width))
|
370 |
+
self.ln_pre = LayerNorm(width)
|
371 |
+
|
372 |
+
self.transformer = ViTTransformer(width, layers, heads)
|
373 |
+
|
374 |
+
self.ln_post = LayerNorm(width)
|
375 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
376 |
+
|
377 |
+
def forward(self, x: torch.Tensor):
|
378 |
+
# input: batch, 3, 224, 224
|
379 |
+
|
380 |
+
# batch, 1024, 16, 16
|
381 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
382 |
+
# batch, 1024, 256
|
383 |
+
x = x.reshape(x.shape[0], x.shape[1],
|
384 |
+
-1) # shape = [*, width, grid ** 2]
|
385 |
+
# batch, 256, 1024
|
386 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
387 |
+
# batch, 257, 1024
|
388 |
+
x = torch.cat([
|
389 |
+
self.class_embedding.to(x.dtype) + torch.zeros(
|
390 |
+
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x
|
391 |
+
],
|
392 |
+
dim=1) # shape = [*, grid ** 2 + 1, width]
|
393 |
+
|
394 |
+
x = x + self.positional_embedding.to(x.dtype)
|
395 |
+
|
396 |
+
x = self.ln_pre(x)
|
397 |
+
# 257, batch, 1024
|
398 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
399 |
+
|
400 |
+
out = self.transformer(x)
|
401 |
+
# batch, 257, 1024
|
402 |
+
x1, x2 ,x3, x4 = out[0], out[1], out[2], out[3]
|
403 |
+
x1 = x1.permute(1, 0, 2)
|
404 |
+
x2 = x2.permute(1, 0, 2)
|
405 |
+
x3 = x3.permute(1, 0, 2)
|
406 |
+
x4 = x4.permute(1, 0, 2) # LND -> NLD
|
407 |
+
|
408 |
+
# 用于分类
|
409 |
+
x = self.ln_post(x4[:, 0, :])
|
410 |
+
#feature
|
411 |
+
# x_f = self.ln_post(x[:, 1:, :])
|
412 |
+
|
413 |
+
|
414 |
+
if self.proj is not None:
|
415 |
+
x = x @ self.proj
|
416 |
+
|
417 |
+
return (x1[:, 1:, :], x2[:, 1:, :], x3[:, 1:, :], x4[:, 1:, :]), x
|
418 |
+
|
419 |
+
class ModifiedVisionTransformer(nn.Module):
|
420 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int,
|
421 |
+
layers: int, heads: int, output_dim: int):
|
422 |
+
super().__init__()
|
423 |
+
self.input_resolution = input_resolution
|
424 |
+
self.output_dim = output_dim
|
425 |
+
self.conv1 = nn.Conv2d(in_channels=3,
|
426 |
+
out_channels=width,
|
427 |
+
kernel_size=patch_size,
|
428 |
+
stride=patch_size,
|
429 |
+
bias=False)
|
430 |
+
|
431 |
+
self.conv2 = nn.Conv2d(in_channels=3,
|
432 |
+
out_channels=width // 2,
|
433 |
+
kernel_size=patch_size // 2,
|
434 |
+
stride=patch_size // 2,
|
435 |
+
bias=False)
|
436 |
+
|
437 |
+
self.conv3 = nn.Conv2d(in_channels=3,
|
438 |
+
out_channels=width,
|
439 |
+
kernel_size=patch_size * 2,
|
440 |
+
stride=patch_size * 2,
|
441 |
+
bias=False)
|
442 |
+
self.conv_layers = [self.conv1, self.conv2]
|
443 |
+
scale = width**-0.5
|
444 |
+
|
445 |
+
self.class_embedding1 = nn.Parameter(scale * torch.randn(width))
|
446 |
+
self.class_embedding2 = nn.Parameter(scale * torch.randn(width // 2))
|
447 |
+
self.cls_layers = [self.class_embedding1, self.class_embedding2]
|
448 |
+
|
449 |
+
self.positional_embedding1 = nn.Parameter(scale * torch.randn(
|
450 |
+
(input_resolution // patch_size)**2 + 1, width))
|
451 |
+
self.positional_embedding2 = nn.Parameter(scale * torch.randn(
|
452 |
+
(input_resolution // (patch_size // 2)) ** 2 + 1, width // 2))
|
453 |
+
self.pos_layers = [self.positional_embedding1, self.positional_embedding2]
|
454 |
+
|
455 |
+
self.ln_pre1 = LayerNorm(width)
|
456 |
+
self.ln_pre2 = LayerNorm(width // 2)
|
457 |
+
self.pre_layers = [self.ln_pre1, self.ln_pre2]
|
458 |
+
|
459 |
+
self.transformer1 = Transformer(width, layers, heads)
|
460 |
+
self.transformer2 = Transformer(width // 2, layers, heads)
|
461 |
+
self.tran_layers = [self.transformer1, self.transformer2]
|
462 |
+
|
463 |
+
self.ln_post1 = LayerNorm(width)
|
464 |
+
self.ln_post2 = LayerNorm(width // 2)
|
465 |
+
self.post_layers = [self.ln_post1, self.ln_post2]
|
466 |
+
|
467 |
+
self.proj1 = nn.Parameter(scale * torch.randn(width, output_dim * 2))
|
468 |
+
self.proj2 = nn.Parameter(scale * torch.randn(width // 2, output_dim))
|
469 |
+
self.proj_layers = [self.proj1, self.proj2]
|
470 |
+
|
471 |
+
|
472 |
+
def forward(self, x: torch.Tensor):
|
473 |
+
# input: batch, 3, 224, 224
|
474 |
+
input = x
|
475 |
+
# batch, 1024, 16, 16
|
476 |
+
out = []
|
477 |
+
f = []
|
478 |
+
cl = []
|
479 |
+
for i in range(2):
|
480 |
+
x = self.conv_layers[i](input) # shape = [*, width, grid, grid]
|
481 |
+
|
482 |
+
b, c, w, h = x.shape
|
483 |
+
# batch, 1024, 256
|
484 |
+
x = x.reshape(x.shape[0], x.shape[1],
|
485 |
+
-1) # shape = [*, width, grid ** 2]
|
486 |
+
# batch, 256, 1024
|
487 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
488 |
+
# batch, 257, 1024
|
489 |
+
x = torch.cat([
|
490 |
+
self.cls_layers[i].to(x.dtype) + torch.zeros(
|
491 |
+
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x
|
492 |
+
],
|
493 |
+
dim=1) # shape = [*, grid ** 2 + 1, width]
|
494 |
+
|
495 |
+
x = x + self.pos_layers[i].to(x.dtype)
|
496 |
+
|
497 |
+
x = self.pre_layers[i](x)
|
498 |
+
# 257, batch, 1024
|
499 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
500 |
+
|
501 |
+
x, cls = self.tran_layers[i](x)
|
502 |
+
# batch, 257, 1024
|
503 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
504 |
+
|
505 |
+
# 用于分类
|
506 |
+
# x = self.ln_post(x[:, 0, :])
|
507 |
+
# feature
|
508 |
+
x = self.post_layers[i](x[:, 1:, :])
|
509 |
+
|
510 |
+
|
511 |
+
|
512 |
+
if self.proj_layers[i] is not None:
|
513 |
+
x = x @ self.proj_layers[i]
|
514 |
+
cls = [j @ self.proj_layers[i] for j in cls]
|
515 |
+
|
516 |
+
feat = x.permute(0,2,1).reshape(b, x.shape[2] , w, h)
|
517 |
+
out.append(x)
|
518 |
+
f.append(feat)
|
519 |
+
cl.append(cls)
|
520 |
+
return out, f, cl
|
521 |
+
|
522 |
+
"""
|
523 |
+
Long CLIP
|
524 |
+
"""
|
525 |
+
class LCLIP(nn.Module):
|
526 |
+
def __init__(self,
|
527 |
+
embed_dim: int,
|
528 |
+
# vision
|
529 |
+
image_resolution: int,
|
530 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
531 |
+
vision_width: int,
|
532 |
+
vision_patch_size: int,
|
533 |
+
# text
|
534 |
+
context_length: int,
|
535 |
+
vocab_size: int,
|
536 |
+
transformer_width: int,
|
537 |
+
transformer_heads: int,
|
538 |
+
transformer_layers: int,
|
539 |
+
load_from_clip: bool
|
540 |
+
):
|
541 |
+
super().__init__()
|
542 |
+
self.context_length = 248
|
543 |
+
|
544 |
+
if isinstance(vision_layers, (tuple, list)):
|
545 |
+
vision_heads = vision_width * 32 // 64
|
546 |
+
self.visual = ModifiedResNet(
|
547 |
+
layers=vision_layers,
|
548 |
+
output_dim=embed_dim,
|
549 |
+
heads=vision_heads,
|
550 |
+
input_resolution=image_resolution,
|
551 |
+
width=vision_width
|
552 |
+
)
|
553 |
+
else:
|
554 |
+
vision_heads = vision_width // 64
|
555 |
+
self.visual = VisionTransformer(
|
556 |
+
input_resolution=image_resolution,
|
557 |
+
patch_size=vision_patch_size,
|
558 |
+
width=vision_width,
|
559 |
+
layers=vision_layers,
|
560 |
+
heads=vision_heads,
|
561 |
+
output_dim=embed_dim
|
562 |
+
)
|
563 |
+
|
564 |
+
self.transformer = Transformer(
|
565 |
+
width=transformer_width,
|
566 |
+
layers=transformer_layers,
|
567 |
+
heads=transformer_heads,
|
568 |
+
attn_mask=self.build_attention_mask()
|
569 |
+
)
|
570 |
+
|
571 |
+
self.vocab_size = vocab_size
|
572 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
573 |
+
# self.positional_embedding = nn.Parameter(torch.empty(248, transformer_width))
|
574 |
+
|
575 |
+
if load_from_clip == False:
|
576 |
+
self.positional_embedding = nn.Parameter(torch.empty(248, transformer_width))
|
577 |
+
self.positional_embedding_res = nn.Parameter(torch.empty(248, transformer_width))
|
578 |
+
|
579 |
+
else:
|
580 |
+
self.positional_embedding = nn.Parameter(torch.empty(248, transformer_width))
|
581 |
+
|
582 |
+
self.ln_final = LayerNorm(transformer_width)
|
583 |
+
|
584 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
585 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
586 |
+
|
587 |
+
self.initialize_parameters()
|
588 |
+
self.mask1 = torch.zeros([248, 1])
|
589 |
+
self.mask1[:20, :] = 1
|
590 |
+
self.mask2 = torch.zeros([248, 1])
|
591 |
+
self.mask2[20:, :] = 1
|
592 |
+
|
593 |
+
|
594 |
+
def initialize_parameters(self):
|
595 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
596 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
597 |
+
|
598 |
+
if isinstance(self.visual, ModifiedResNet):
|
599 |
+
if self.visual.attnpool is not None:
|
600 |
+
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
601 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
602 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
603 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
604 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
605 |
+
|
606 |
+
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
607 |
+
for name, param in resnet_block.named_parameters():
|
608 |
+
if name.endswith("bn3.weight"):
|
609 |
+
nn.init.zeros_(param)
|
610 |
+
|
611 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
612 |
+
attn_std = self.transformer.width ** -0.5
|
613 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
614 |
+
for block in self.transformer.resblocks:
|
615 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
616 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
617 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
618 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
619 |
+
|
620 |
+
if self.text_projection is not None:
|
621 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
622 |
+
|
623 |
+
def build_attention_mask(self):
|
624 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
625 |
+
# pytorch uses additive attention mask; fill with -inf
|
626 |
+
mask = torch.empty(self.context_length, self.context_length)
|
627 |
+
mask.fill_(float("-inf"))
|
628 |
+
mask.triu_(1) # zero out the lower diagonal
|
629 |
+
return mask
|
630 |
+
|
631 |
+
@property
|
632 |
+
def dtype(self):
|
633 |
+
return self.visual.conv1.weight.dtype
|
634 |
+
|
635 |
+
def encode_image(self, image):
|
636 |
+
return self.visual(image.type(self.dtype))
|
637 |
+
|
638 |
+
def encode_text(self, text):
|
639 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
640 |
+
|
641 |
+
# x = x + (self.positional_embedding.to(x.device) * self.mask1.to(x.device)).type(self.dtype).to(x.device) + (self.positional_embedding_res.to(x.device) * self.mask2.to(x.device)).type(self.dtype).to(x.device)
|
642 |
+
x = x + (self.positional_embedding.to(x.device) * self.mask1.to(x.device)).type(self.dtype).to(x.device)
|
643 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
644 |
+
x = self.transformer(x)
|
645 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
646 |
+
x = self.ln_final(x).type(self.dtype)
|
647 |
+
|
648 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
649 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
650 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
651 |
+
|
652 |
+
return x
|
653 |
+
|
654 |
+
def encode_text_full(self, text):
|
655 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
656 |
+
|
657 |
+
x = x + (self.positional_embedding.to(x.device) * self.mask1.to(x.device)).type(self.dtype).to(x.device) + (self.positional_embedding_res.to(x.device) * self.mask2.to(x.device)).type(self.dtype).to(x.device)
|
658 |
+
|
659 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
660 |
+
x = self.transformer(x)
|
661 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
662 |
+
x = self.ln_final(x).type(self.dtype)
|
663 |
+
|
664 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
665 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
666 |
+
#x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
667 |
+
|
668 |
+
return x
|
669 |
+
|
670 |
+
|
671 |
+
def forward(self, image, text):
|
672 |
+
image_features = self.encode_image(image)
|
673 |
+
text_features, _ = self.encode_text(text)
|
674 |
+
|
675 |
+
# normalized features
|
676 |
+
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
677 |
+
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
678 |
+
|
679 |
+
# cosine similarity as logits
|
680 |
+
logit_scale = self.logit_scale.exp()
|
681 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
682 |
+
logits_per_text = logits_per_image.t()
|
683 |
+
|
684 |
+
# shape = [global_batch_size, global_batch_size]
|
685 |
+
return logits_per_image, logits_per_text
|
686 |
+
"""
|
687 |
+
original CLIP
|
688 |
+
"""
|
689 |
+
class CLIP(nn.Module):
|
690 |
+
def __init__(
|
691 |
+
self,
|
692 |
+
embed_dim: int,
|
693 |
+
# vision
|
694 |
+
image_resolution: int,
|
695 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
696 |
+
vision_width: int,
|
697 |
+
vision_patch_size: int,
|
698 |
+
# text
|
699 |
+
context_length: int,
|
700 |
+
txt_length: int,
|
701 |
+
vocab_size: int,
|
702 |
+
transformer_width: int,
|
703 |
+
transformer_heads: int,
|
704 |
+
transformer_layers: int):
|
705 |
+
super().__init__()
|
706 |
+
|
707 |
+
self.context_length = context_length
|
708 |
+
|
709 |
+
if isinstance(vision_layers, (tuple, list)):
|
710 |
+
vision_heads = vision_width * 32 // 64
|
711 |
+
self.visual = ModifiedResNet(layers=vision_layers,
|
712 |
+
output_dim=embed_dim,
|
713 |
+
heads=vision_heads,
|
714 |
+
input_resolution=image_resolution,
|
715 |
+
width=vision_width)
|
716 |
+
# self.fq_attnpool = AttentionPool2d(image_resolution // 32, vision_width* 32,
|
717 |
+
# vision_heads, embed_dim)
|
718 |
+
else:
|
719 |
+
vision_heads = vision_width // 64
|
720 |
+
self.visual = VisionTransformer(input_resolution=image_resolution,
|
721 |
+
patch_size=vision_patch_size,
|
722 |
+
width=vision_width,
|
723 |
+
layers=vision_layers,
|
724 |
+
heads=vision_heads,
|
725 |
+
output_dim=embed_dim)
|
726 |
+
|
727 |
+
self.transformer = Transformer(
|
728 |
+
width=transformer_width,
|
729 |
+
layers=transformer_layers,
|
730 |
+
heads=transformer_heads,
|
731 |
+
attn_mask=self.build_attention_mask(txt_length))
|
732 |
+
|
733 |
+
self.vocab_size = vocab_size
|
734 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
735 |
+
self.positional_embedding = nn.Parameter(
|
736 |
+
torch.empty(self.context_length, transformer_width))
|
737 |
+
self.ln_final = LayerNorm(transformer_width)
|
738 |
+
|
739 |
+
self.text_projection = nn.Parameter(
|
740 |
+
torch.empty(transformer_width, embed_dim))
|
741 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
742 |
+
|
743 |
+
self.token_embedding.requires_grad_ = False
|
744 |
+
self.initialize_parameters()
|
745 |
+
|
746 |
+
def initialize_parameters(self):
|
747 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
748 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
749 |
+
|
750 |
+
if isinstance(self.visual, ModifiedResNet):
|
751 |
+
if self.visual.attnpool is not None:
|
752 |
+
std = self.visual.attnpool.c_proj.in_features**-0.5
|
753 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
754 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
755 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
756 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
757 |
+
|
758 |
+
for resnet_block in [
|
759 |
+
self.visual.layer1, self.visual.layer2, self.visual.layer3,
|
760 |
+
self.visual.layer4
|
761 |
+
]:
|
762 |
+
for name, param in resnet_block.named_parameters():
|
763 |
+
if name.endswith("bn3.weight"):
|
764 |
+
nn.init.zeros_(param)
|
765 |
+
|
766 |
+
proj_std = (self.transformer.width**-0.5) * (
|
767 |
+
(2 * self.transformer.layers)**-0.5)
|
768 |
+
attn_std = self.transformer.width**-0.5
|
769 |
+
fc_std = (2 * self.transformer.width)**-0.5
|
770 |
+
for block in self.transformer.resblocks:
|
771 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
772 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
773 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
774 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
775 |
+
|
776 |
+
if self.text_projection is not None:
|
777 |
+
nn.init.normal_(self.text_projection,
|
778 |
+
std=self.transformer.width**-0.5)
|
779 |
+
|
780 |
+
def build_attention_mask(self, context_length):
|
781 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
782 |
+
# pytorch uses additive attention mask; fill with -inf
|
783 |
+
mask = torch.empty(context_length, context_length)
|
784 |
+
mask.fill_(float("-inf"))
|
785 |
+
mask.triu_(1) # zero out the lower diagonal
|
786 |
+
return mask
|
787 |
+
|
788 |
+
@property
|
789 |
+
def dtype(self):
|
790 |
+
return self.visual.conv1.weight.dtype
|
791 |
+
|
792 |
+
def encode_image(self, image):
|
793 |
+
return self.visual(image.type(self.dtype))
|
794 |
+
|
795 |
+
def encode_fq(self, image):
|
796 |
+
return self.fq_attnpool(image.type(self.dtype))
|
797 |
+
|
798 |
+
def encode_text(self, text):
|
799 |
+
a = self.token_embedding
|
800 |
+
x = self.token_embedding(text).type(
|
801 |
+
self.dtype) # [batch_size, n_ctx, d_model]
|
802 |
+
|
803 |
+
x = x + self.positional_embedding.type(self.dtype)[:x.size(1)]
|
804 |
+
# print(x.shape)
|
805 |
+
# print(x)
|
806 |
+
|
807 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
808 |
+
x = self.transformer(x)
|
809 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
810 |
+
x = self.ln_final(x).type(self.dtype)
|
811 |
+
# print(text[0])
|
812 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
813 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
814 |
+
state = x[torch.arange(x.shape[0]),
|
815 |
+
text.argmax(dim=-1)] @ self.text_projection
|
816 |
+
# x = x @ self.text_projection
|
817 |
+
# state = x[torch.arange(x.shape[0]), text.argmax(dim=-1)]
|
818 |
+
|
819 |
+
return x, state
|
820 |
+
|
821 |
+
def forward(self, image, text):
|
822 |
+
image_features = self.encode_image(image)
|
823 |
+
text_features = self.encode_text(text)
|
824 |
+
|
825 |
+
# normalized features
|
826 |
+
image_features = image_features / image_features.norm(dim=-1,
|
827 |
+
keepdim=True)
|
828 |
+
text_features = text_features / text_features.norm(dim=-1,
|
829 |
+
keepdim=True)
|
830 |
+
|
831 |
+
# cosine similarity as logits
|
832 |
+
logit_scale = self.logit_scale.exp()
|
833 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
834 |
+
logits_per_text = logits_per_image.t()
|
835 |
+
|
836 |
+
# shape = [global_batch_size, global_batch_size]
|
837 |
+
return logits_per_image, logits_per_text
|
838 |
+
|
839 |
+
"""
|
840 |
+
modified CLIP : without text encoder
|
841 |
+
"""
|
842 |
+
|
843 |
+
class zhCLIP(nn.Module):
|
844 |
+
def __init__(self,
|
845 |
+
embed_dim,
|
846 |
+
# vision
|
847 |
+
image_resolution: int,
|
848 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
849 |
+
vision_width: int,
|
850 |
+
vision_patch_size: int):
|
851 |
+
super().__init__()
|
852 |
+
|
853 |
+
|
854 |
+
|
855 |
+
if isinstance(vision_layers, (tuple, list)):
|
856 |
+
vision_heads = vision_width * 32 // 64
|
857 |
+
self.visual = ModifiedResNet(layers=vision_layers,
|
858 |
+
output_dim=embed_dim,
|
859 |
+
heads=vision_heads,
|
860 |
+
input_resolution=image_resolution,
|
861 |
+
width=vision_width)
|
862 |
+
self.fq_attnpool = AttentionPool2d(image_resolution // 32, vision_width* 32,
|
863 |
+
vision_heads, embed_dim)
|
864 |
+
else:
|
865 |
+
vision_heads = vision_width // 64
|
866 |
+
self.visual = ModifiedVisionTransformer(input_resolution=image_resolution,
|
867 |
+
patch_size=vision_patch_size,
|
868 |
+
width=vision_width,
|
869 |
+
layers=vision_layers,
|
870 |
+
heads=vision_heads,
|
871 |
+
output_dim=embed_dim)
|
872 |
+
|
873 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
874 |
+
self.initialize_parameters()
|
875 |
+
|
876 |
+
def initialize_parameters(self):
|
877 |
+
|
878 |
+
if isinstance(self.visual, ModifiedResNet):
|
879 |
+
if self.visual.attnpool is not None:
|
880 |
+
std = self.visual.attnpool.c_proj.in_features**-0.5
|
881 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
882 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
883 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
884 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
885 |
+
|
886 |
+
for resnet_block in [
|
887 |
+
self.visual.layer1, self.visual.layer2, self.visual.layer3,
|
888 |
+
self.visual.layer4
|
889 |
+
]:
|
890 |
+
for name, param in resnet_block.named_parameters():
|
891 |
+
if name.endswith("bn3.weight"):
|
892 |
+
nn.init.zeros_(param)
|
893 |
+
|
894 |
+
|
895 |
+
def build_attention_mask(self, context_length):
|
896 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
897 |
+
# pytorch uses additive attention mask; fill with -inf
|
898 |
+
mask = torch.empty(context_length, context_length)
|
899 |
+
mask.fill_(float("-inf"))
|
900 |
+
mask.triu_(1) # zero out the lower diagonal
|
901 |
+
return mask
|
902 |
+
|
903 |
+
@property
|
904 |
+
def dtype(self):
|
905 |
+
return self.visual.conv1.weight.dtype
|
906 |
+
|
907 |
+
def encode_image(self, image):
|
908 |
+
return self.visual(image.type(self.dtype))
|
909 |
+
|
910 |
+
def encode_fq(self, image):
|
911 |
+
return self.fq_attnpool(image.type(self.dtype))
|
912 |
+
|
913 |
+
def forward(self, image, text):
|
914 |
+
image_features = self.encode_image(image)
|
915 |
+
text_features = self.encode_text(text)
|
916 |
+
|
917 |
+
# normalized features
|
918 |
+
image_features = image_features / image_features.norm(dim=-1,
|
919 |
+
keepdim=True)
|
920 |
+
text_features = text_features / text_features.norm(dim=-1,
|
921 |
+
keepdim=True)
|
922 |
+
|
923 |
+
# cosine similarity as logits
|
924 |
+
logit_scale = self.logit_scale.exp()
|
925 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
926 |
+
logits_per_text = logits_per_image.t()
|
927 |
+
|
928 |
+
# shape = [global_batch_size, global_batch_size]
|
929 |
+
return logits_per_image, logits_per_text
|
930 |
+
|
931 |
+
|
932 |
+
def convert_weights(model: nn.Module):
|
933 |
+
"""Convert applicable model parameters to fp16"""
|
934 |
+
def _convert_weights_to_fp16(l):
|
935 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
936 |
+
l.weight.data = l.weight.data.half()
|
937 |
+
if l.bias is not None:
|
938 |
+
l.bias.data = l.bias.data.half()
|
939 |
+
|
940 |
+
if isinstance(l, nn.MultiheadAttention):
|
941 |
+
for attr in [
|
942 |
+
*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]],
|
943 |
+
"in_proj_bias", "bias_k", "bias_v"
|
944 |
+
]:
|
945 |
+
tensor = getattr(l, attr)
|
946 |
+
if tensor is not None:
|
947 |
+
tensor.data = tensor.data.half()
|
948 |
+
|
949 |
+
for name in ["text_projection", "proj"]:
|
950 |
+
if hasattr(l, name):
|
951 |
+
attr = getattr(l, name)
|
952 |
+
if attr is not None:
|
953 |
+
attr.data = attr.data.half()
|
954 |
+
|
955 |
+
model.apply(_convert_weights_to_fp16)
|
956 |
+
|
957 |
+
class PromptLearner(nn.Module):
|
958 |
+
|
959 |
+
def __init__(self, transformer_width, context_length, vocab_size,
|
960 |
+
transformer_layers, transformer_heads, bert_embed_dim):
|
961 |
+
super().__init__()
|
962 |
+
|
963 |
+
self.transformer_width = transformer_width
|
964 |
+
self.context_length = context_length
|
965 |
+
self.vocab_size = vocab_size
|
966 |
+
self.token_embedding = nn.Embedding(self.vocab_size, self.transformer_width)
|
967 |
+
|
968 |
+
self.transformer = Transformer(
|
969 |
+
width=transformer_width,
|
970 |
+
layers=transformer_layers,
|
971 |
+
heads=transformer_heads,
|
972 |
+
attn_mask=self.build_attention_mask()
|
973 |
+
)
|
974 |
+
|
975 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
976 |
+
self.ln_final = LayerNorm(transformer_width)
|
977 |
+
|
978 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, bert_embed_dim))
|
979 |
+
|
980 |
+
|
981 |
+
# self.load_from_openai_model(pretrained_model=clip_pretrain)
|
982 |
+
|
983 |
+
def build_attention_mask(self):
|
984 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
985 |
+
# pytorch uses additive attention mask; fill with -inf
|
986 |
+
mask = torch.empty(self.context_length, self.context_length)
|
987 |
+
mask.fill_(float("-inf"))
|
988 |
+
mask.triu_(1) # zero out the lower diagonal
|
989 |
+
return mask
|
990 |
+
|
991 |
+
def init_label_emb(self, labels_path):
|
992 |
+
|
993 |
+
label = open(labels_path, 'r').readlines()
|
994 |
+
# label81 = open(unseen_labels_path, 'r').readlines()
|
995 |
+
# label1006 = label925 + label81
|
996 |
+
self.name_lens = [len(_tokenizer.encode(name)) for name in label]
|
997 |
+
self.label_token = torch.zeros((len(self.name_lens), self.context_length), dtype=torch.long)
|
998 |
+
for i, c in enumerate(label):
|
999 |
+
self.label_token[i] = tokenize(f"There is a {c.strip()} in the scene")
|
1000 |
+
self.label_emb = torch.zeros((len(self.name_lens), max(self.name_lens), self.transformer_width))
|
1001 |
+
for i, embed in enumerate(self.token_embedding(self.label_token)):
|
1002 |
+
self.label_emb[i][:self.name_lens[i]] = embed[4:4 + self.name_lens[i]].clone().detach()
|
1003 |
+
|
1004 |
+
# def load_from_openai_model(self, pretrained_model):
|
1005 |
+
# state_dict = clip.load(pretrained_model, jit=False)[0].state_dict()
|
1006 |
+
# load_dict = {}
|
1007 |
+
# for k, v in state_dict.items():
|
1008 |
+
# if not k.startswith("visual") and (
|
1009 |
+
# k not in ["logit_scale", "input_resolution", "context_length", "vocab_size"]):
|
1010 |
+
# load_dict[k] = v
|
1011 |
+
# msg = self.load_state_dict(load_dict)
|
1012 |
+
|
1013 |
+
def load_label_emb(self, label=None):
|
1014 |
+
self.name_lens = [len(_tokenizer.encode(name.split("\t")[-1])) for name in label]
|
1015 |
+
self.label_token = torch.zeros((len(self.name_lens), self.context_length), dtype=torch.long).cuda()
|
1016 |
+
for i, c in enumerate(label):
|
1017 |
+
name = c.split("\t")[-1]
|
1018 |
+
self.label_token[i] = tokenize(f"There is a {name.strip()} in the scene")
|
1019 |
+
self.label_emb = torch.zeros((len(self.name_lens), max(self.name_lens), self.transformer_width)).cuda()
|
1020 |
+
for i, embed in enumerate(self.token_embedding(self.label_token)):
|
1021 |
+
self.label_emb[i][:self.name_lens[i]] = embed[4:4 + self.name_lens[i]].clone().detach()
|
1022 |
+
|
1023 |
+
def forward(self, device):
|
1024 |
+
|
1025 |
+
label_embeds = self.token_embedding(self.label_token.to(device))
|
1026 |
+
|
1027 |
+
for i in range(label_embeds.shape[0]):
|
1028 |
+
label_embeds[i, 4:4 + self.name_lens[i], :] = self.label_emb[i][:self.name_lens[i]]
|
1029 |
+
|
1030 |
+
x = label_embeds + self.positional_embedding
|
1031 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
1032 |
+
|
1033 |
+
x = self.transformer(x)
|
1034 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
1035 |
+
x = self.ln_final(x)
|
1036 |
+
|
1037 |
+
res = x[torch.arange(x.shape[0]), self.label_token.argmax(dim=-1)] @ self.text_projection
|
1038 |
+
|
1039 |
+
return res
|
1040 |
+
|
1041 |
+
def build_promptlearner(state_dict: dict):
|
1042 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
1043 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
1044 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
1045 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
1046 |
+
transformer_heads = transformer_width // 64
|
1047 |
+
transformer_layers = len(
|
1048 |
+
set(
|
1049 |
+
k.split(".")[2] for k in state_dict
|
1050 |
+
if k.startswith(f"transformer.resblocks")))
|
1051 |
+
model = PromptLearner(transformer_width, context_length, vocab_size,
|
1052 |
+
transformer_layers, transformer_heads, embed_dim)
|
1053 |
+
# model = PromptLearner(embed_dim, vision_patch_size, context_length, txt_length, vocab_size,
|
1054 |
+
# transformer_width, transformer_heads, transformer_layers)
|
1055 |
+
load_dict = {}
|
1056 |
+
for k, v in state_dict.items():
|
1057 |
+
if not k.startswith("visual") and (
|
1058 |
+
k not in ["logit_scale", "input_resolution", "context_length", "vocab_size"]):
|
1059 |
+
load_dict[k] = v
|
1060 |
+
|
1061 |
+
convert_weights(model)
|
1062 |
+
model.load_state_dict(load_dict, False)
|
1063 |
+
|
1064 |
+
return model
|
1065 |
+
|
1066 |
+
def build_model(state_dict: dict, txt_length: int):
|
1067 |
+
vit = "visual.proj" in state_dict
|
1068 |
+
|
1069 |
+
if vit:
|
1070 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
1071 |
+
vision_layers = len([
|
1072 |
+
k for k in state_dict.keys()
|
1073 |
+
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")
|
1074 |
+
])
|
1075 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
1076 |
+
grid_size = round(
|
1077 |
+
(state_dict["visual.positional_embedding"].shape[0] - 1)**0.5)
|
1078 |
+
image_resolution = vision_patch_size * grid_size
|
1079 |
+
else:
|
1080 |
+
counts: list = [
|
1081 |
+
len(
|
1082 |
+
set(
|
1083 |
+
k.split(".")[2] for k in state_dict
|
1084 |
+
if k.startswith(f"visual.layer{b}")))
|
1085 |
+
for b in [1, 2, 3, 4]
|
1086 |
+
]
|
1087 |
+
vision_layers = tuple(counts)
|
1088 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
1089 |
+
output_width = round(
|
1090 |
+
(state_dict["visual.attnpool.positional_embedding"].shape[0] -
|
1091 |
+
1)**0.5)
|
1092 |
+
vision_patch_size = None
|
1093 |
+
assert output_width**2 + 1 == state_dict[
|
1094 |
+
"visual.attnpool.positional_embedding"].shape[0]
|
1095 |
+
image_resolution = output_width * 32
|
1096 |
+
|
1097 |
+
vision_heads = vision_width * 32 // 64
|
1098 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
1099 |
+
# context_length = state_dict["positional_embedding"].shape[0]
|
1100 |
+
context_length = txt_length
|
1101 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
1102 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
1103 |
+
transformer_heads = transformer_width // 64
|
1104 |
+
transformer_layers = len(
|
1105 |
+
set(
|
1106 |
+
k.split(".")[2] for k in state_dict
|
1107 |
+
if k.startswith(f"transformer.resblocks")))
|
1108 |
+
|
1109 |
+
model = CLIP(embed_dim, image_resolution, vision_layers, vision_width,
|
1110 |
+
vision_patch_size, context_length, txt_length, vocab_size,
|
1111 |
+
transformer_width, transformer_heads, transformer_layers)
|
1112 |
+
|
1113 |
+
for key in ["input_resolution", "context_length", "vocab_size", 'positional_embedding']:
|
1114 |
+
if key in state_dict:
|
1115 |
+
del state_dict[key]
|
1116 |
+
|
1117 |
+
convert_weights(model)
|
1118 |
+
model.load_state_dict(state_dict, False)
|
1119 |
+
return model.eval(), image_resolution, vision_heads, embed_dim, vision_width, vision_patch_size
|
1120 |
+
|
1121 |
+
def build_lclip_model(state_dict: dict, load_from_clip: bool):
|
1122 |
+
vit = "visual.proj" in state_dict
|
1123 |
+
|
1124 |
+
if vit:
|
1125 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
1126 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
1127 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
1128 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
1129 |
+
image_resolution = vision_patch_size * grid_size
|
1130 |
+
|
1131 |
+
else:
|
1132 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
1133 |
+
vision_layers = tuple(counts)
|
1134 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
1135 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
1136 |
+
vision_patch_size = None
|
1137 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
1138 |
+
image_resolution = output_width * 32
|
1139 |
+
|
1140 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
1141 |
+
# print(embed_dim)
|
1142 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
1143 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
1144 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
1145 |
+
transformer_heads = transformer_width // 64
|
1146 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")))
|
1147 |
+
|
1148 |
+
model = LCLIP(
|
1149 |
+
embed_dim,
|
1150 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
1151 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers, load_from_clip
|
1152 |
+
)
|
1153 |
+
|
1154 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
1155 |
+
if key in state_dict:
|
1156 |
+
del state_dict[key]
|
1157 |
+
|
1158 |
+
convert_weights(model)
|
1159 |
+
# model.load_state_dict(state_dict)
|
1160 |
+
model.load_state_dict(state_dict, strict=False)
|
1161 |
+
vision_heads = vision_width // 64
|
1162 |
+
# print(vision_heads)
|
1163 |
+
return model.eval(), image_resolution, vision_heads, embed_dim, vision_width, vision_patch_size
|
1164 |
+
|
1165 |
+
def build_modified_model(state_dict: dict, txt_length: int):
|
1166 |
+
vit = "visual.proj" in state_dict
|
1167 |
+
|
1168 |
+
if vit:
|
1169 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
1170 |
+
vision_layers = len([
|
1171 |
+
k for k in state_dict.keys()
|
1172 |
+
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")
|
1173 |
+
])
|
1174 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
1175 |
+
grid_size = round(
|
1176 |
+
(state_dict["visual.positional_embedding"].shape[0] - 1)**0.5)
|
1177 |
+
image_resolution = vision_patch_size * grid_size
|
1178 |
+
else:
|
1179 |
+
counts: list = [
|
1180 |
+
len(
|
1181 |
+
set(
|
1182 |
+
k.split(".")[2] for k in state_dict
|
1183 |
+
if k.startswith(f"visual.layer{b}")))
|
1184 |
+
for b in [1, 2, 3, 4]
|
1185 |
+
]
|
1186 |
+
vision_layers = tuple(counts)
|
1187 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
1188 |
+
|
1189 |
+
output_width = round(
|
1190 |
+
(state_dict["visual.attnpool.positional_embedding"].shape[0] -
|
1191 |
+
1)**0.5)
|
1192 |
+
vision_patch_size = None
|
1193 |
+
assert output_width**2 + 1 == state_dict[
|
1194 |
+
"visual.attnpool.positional_embedding"].shape[0]
|
1195 |
+
image_resolution = output_width * 32
|
1196 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
1197 |
+
|
1198 |
+
model = zhCLIP(embed_dim, image_resolution, vision_layers, vision_width,
|
1199 |
+
vision_patch_size)
|
1200 |
+
|
1201 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
1202 |
+
if key in state_dict:
|
1203 |
+
del state_dict[key]
|
1204 |
+
|
1205 |
+
convert_weights(model)
|
1206 |
+
model.load_state_dict(state_dict, False)
|
1207 |
+
return model.eval()
|
cisen/model/layers.py
ADDED
@@ -0,0 +1,633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
# import open_clip
|
7 |
+
|
8 |
+
def conv_layer(in_dim, out_dim, kernel_size=1, padding=0, stride=1):
|
9 |
+
return nn.Sequential(
|
10 |
+
nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, bias=False),
|
11 |
+
nn.BatchNorm2d(out_dim), nn.ReLU(True))
|
12 |
+
# return nn.Sequential(
|
13 |
+
# nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, bias=False),
|
14 |
+
# nn.LayerNorm(out_dim), nn.ReLU(True))
|
15 |
+
|
16 |
+
|
17 |
+
# def conv_layer_1(in_dim, out_dim, kernel_size=1, padding=0, stride=1):
|
18 |
+
# return nn.Sequential(
|
19 |
+
# nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, bias=False),
|
20 |
+
# nn.LayerNorm(out_dim), nn.ReLU(True))
|
21 |
+
|
22 |
+
def linear_layer(in_dim, out_dim,bias=False):
|
23 |
+
return nn.Sequential(nn.Linear(in_dim, out_dim, bias),
|
24 |
+
nn.BatchNorm1d(out_dim), nn.ReLU(True))
|
25 |
+
# return nn.Sequential(nn.Linear(in_dim, out_dim, bias),
|
26 |
+
# nn.LayerNorm(out_dim), nn.ReLU(True))
|
27 |
+
class AttentionPool2d(nn.Module):
|
28 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
29 |
+
super().__init__()
|
30 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
31 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
32 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
33 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
34 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
35 |
+
self.num_heads = num_heads
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
|
39 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
40 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
41 |
+
x, _ = F.multi_head_attention_forward(
|
42 |
+
query=x[:1], key=x, value=x,
|
43 |
+
embed_dim_to_check=x.shape[-1],
|
44 |
+
num_heads=self.num_heads,
|
45 |
+
q_proj_weight=self.q_proj.weight,
|
46 |
+
k_proj_weight=self.k_proj.weight,
|
47 |
+
v_proj_weight=self.v_proj.weight,
|
48 |
+
in_proj_weight=None,
|
49 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
50 |
+
bias_k=None,
|
51 |
+
bias_v=None,
|
52 |
+
add_zero_attn=False,
|
53 |
+
dropout_p=0,
|
54 |
+
out_proj_weight=self.c_proj.weight,
|
55 |
+
out_proj_bias=self.c_proj.bias,
|
56 |
+
use_separate_proj_weight=True,
|
57 |
+
training=self.training,
|
58 |
+
need_weights=False
|
59 |
+
)
|
60 |
+
return x.squeeze(0)
|
61 |
+
|
62 |
+
# class AttentionPool2d(nn.Module):
|
63 |
+
# def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
64 |
+
# super().__init__()
|
65 |
+
# self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
66 |
+
# self.k_proj = nn.Linear(embed_dim, embed_dim)
|
67 |
+
# self.q_proj = nn.Linear(embed_dim, embed_dim)
|
68 |
+
# self.v_proj = nn.Linear(embed_dim, embed_dim)
|
69 |
+
# self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
70 |
+
# self.num_heads = num_heads
|
71 |
+
#
|
72 |
+
# def forward(self, x):
|
73 |
+
# x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
74 |
+
# x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
75 |
+
# x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
76 |
+
# x, _ = F.multi_head_attention_forward(
|
77 |
+
# query=x, key=x, value=x,
|
78 |
+
# embed_dim_to_check=x.shape[-1],
|
79 |
+
# num_heads=self.num_heads,
|
80 |
+
# q_proj_weight=self.q_proj.weight,
|
81 |
+
# k_proj_weight=self.k_proj.weight,
|
82 |
+
# v_proj_weight=self.v_proj.weight,
|
83 |
+
# in_proj_weight=None,
|
84 |
+
# in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
85 |
+
# bias_k=None,
|
86 |
+
# bias_v=None,
|
87 |
+
# add_zero_attn=False,
|
88 |
+
# dropout_p=0,
|
89 |
+
# out_proj_weight=self.c_proj.weight,
|
90 |
+
# out_proj_bias=self.c_proj.bias,
|
91 |
+
# use_separate_proj_weight=True,
|
92 |
+
# training=self.training,
|
93 |
+
# need_weights=False
|
94 |
+
# )
|
95 |
+
#
|
96 |
+
# return x[0]
|
97 |
+
|
98 |
+
class CoordConv(nn.Module):
|
99 |
+
def __init__(self,
|
100 |
+
in_channels,
|
101 |
+
out_channels,
|
102 |
+
kernel_size=3,
|
103 |
+
padding=1,
|
104 |
+
stride=1):
|
105 |
+
super().__init__()
|
106 |
+
self.conv1 = conv_layer(in_channels + 2, out_channels, kernel_size,
|
107 |
+
padding, stride)
|
108 |
+
|
109 |
+
def add_coord(self, input):
|
110 |
+
b, _, h, w = input.size()
|
111 |
+
x_range = torch.linspace(-1, 1, w, device=input.device)
|
112 |
+
y_range = torch.linspace(-1, 1, h, device=input.device)
|
113 |
+
y, x = torch.meshgrid(y_range, x_range)
|
114 |
+
y = y.expand([b, 1, -1, -1])
|
115 |
+
x = x.expand([b, 1, -1, -1])
|
116 |
+
coord_feat = torch.cat([x, y], 1)
|
117 |
+
input = torch.cat([input, coord_feat], 1)
|
118 |
+
return input
|
119 |
+
|
120 |
+
def forward(self, x):
|
121 |
+
x = self.add_coord(x)
|
122 |
+
x = self.conv1(x)
|
123 |
+
return x
|
124 |
+
|
125 |
+
class TransformerDecoder(nn.Module):
|
126 |
+
def __init__(self,
|
127 |
+
num_layers,
|
128 |
+
d_model,
|
129 |
+
nhead,
|
130 |
+
dim_ffn,
|
131 |
+
dropout,
|
132 |
+
return_intermediate=False):
|
133 |
+
super().__init__()
|
134 |
+
self.layers = nn.ModuleList([
|
135 |
+
TransformerDecoderLayer(d_model=d_model,
|
136 |
+
nhead=nhead,
|
137 |
+
dim_feedforward=dim_ffn,
|
138 |
+
dropout=dropout) for _ in range(num_layers)
|
139 |
+
])
|
140 |
+
self.num_layers = num_layers
|
141 |
+
self.norm = nn.LayerNorm(d_model)
|
142 |
+
self.return_intermediate = return_intermediate
|
143 |
+
|
144 |
+
@staticmethod
|
145 |
+
def pos1d(d_model, length):
|
146 |
+
"""
|
147 |
+
:param d_model: dimension of the model
|
148 |
+
:param length: length of positions
|
149 |
+
:return: length*d_model position matrix
|
150 |
+
"""
|
151 |
+
if d_model % 2 != 0:
|
152 |
+
raise ValueError("Cannot use sin/cos positional encoding with "
|
153 |
+
"odd dim (got dim={:d})".format(d_model))
|
154 |
+
pe = torch.zeros(length, d_model)
|
155 |
+
position = torch.arange(0, length).unsqueeze(1)
|
156 |
+
div_term = torch.exp((torch.arange(0, d_model, 2, dtype=torch.float) *
|
157 |
+
-(math.log(10000.0) / d_model)))
|
158 |
+
pe[:, 0::2] = torch.sin(position.float() * div_term)
|
159 |
+
pe[:, 1::2] = torch.cos(position.float() * div_term)
|
160 |
+
|
161 |
+
return pe.unsqueeze(1) # n, 1, 512
|
162 |
+
|
163 |
+
@staticmethod
|
164 |
+
def pos2d(d_model, height, width):
|
165 |
+
"""
|
166 |
+
:param d_model: dimension of the model
|
167 |
+
:param height: height of the positions
|
168 |
+
:param width: width of the positions
|
169 |
+
:return: d_model*height*width position matrix
|
170 |
+
"""
|
171 |
+
if d_model % 4 != 0:
|
172 |
+
raise ValueError("Cannot use sin/cos positional encoding with "
|
173 |
+
"odd dimension (got dim={:d})".format(d_model))
|
174 |
+
pe = torch.zeros(d_model, height, width)
|
175 |
+
# Each dimension use half of d_model
|
176 |
+
d_model = int(d_model / 2)
|
177 |
+
div_term = torch.exp(
|
178 |
+
torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model))
|
179 |
+
pos_w = torch.arange(0., width).unsqueeze(1)
|
180 |
+
pos_h = torch.arange(0., height).unsqueeze(1)
|
181 |
+
pe[0:d_model:2, :, :] = torch.sin(pos_w * div_term).transpose(
|
182 |
+
0, 1).unsqueeze(1).repeat(1, height, 1)
|
183 |
+
pe[1:d_model:2, :, :] = torch.cos(pos_w * div_term).transpose(
|
184 |
+
0, 1).unsqueeze(1).repeat(1, height, 1)
|
185 |
+
pe[d_model::2, :, :] = torch.sin(pos_h * div_term).transpose(
|
186 |
+
0, 1).unsqueeze(2).repeat(1, 1, width)
|
187 |
+
pe[d_model + 1::2, :, :] = torch.cos(pos_h * div_term).transpose(
|
188 |
+
0, 1).unsqueeze(2).repeat(1, 1, width)
|
189 |
+
|
190 |
+
return pe.reshape(-1, 1, height * width).permute(2, 1, 0) # hw, 1, 512
|
191 |
+
|
192 |
+
def forward(self, vis, txt, pad_mask):
|
193 |
+
'''
|
194 |
+
vis: b, 512, h, w
|
195 |
+
txt: b, L, 512
|
196 |
+
pad_mask: b, L
|
197 |
+
'''
|
198 |
+
B, C, H, W = vis.size()
|
199 |
+
_, L, D = txt.size()
|
200 |
+
# position encoding
|
201 |
+
vis_pos = self.pos2d(C, H, W)
|
202 |
+
txt_pos = self.pos1d(D, L)
|
203 |
+
# reshape & permute
|
204 |
+
vis = vis.reshape(B, C, -1).permute(2, 0, 1)
|
205 |
+
txt = txt.permute(1, 0, 2)
|
206 |
+
# forward
|
207 |
+
output = vis
|
208 |
+
intermediate = []
|
209 |
+
for layer in self.layers:
|
210 |
+
output = layer(output, txt, vis_pos, txt_pos, pad_mask)
|
211 |
+
if self.return_intermediate:
|
212 |
+
# HW, b, 512 -> b, 512, HW
|
213 |
+
intermediate.append(self.norm(output).permute(1, 2, 0))
|
214 |
+
|
215 |
+
if self.norm is not None:
|
216 |
+
# HW, b, 512 -> b, 512, HW
|
217 |
+
output = self.norm(output).permute(1, 2, 0)
|
218 |
+
if self.return_intermediate:
|
219 |
+
intermediate.pop()
|
220 |
+
intermediate.append(output)
|
221 |
+
# [output1, output2, ..., output_n]
|
222 |
+
return intermediate
|
223 |
+
else:
|
224 |
+
# b, 512, HW
|
225 |
+
return output
|
226 |
+
return output
|
227 |
+
|
228 |
+
|
229 |
+
class TransformerDecoderLayer(nn.Module):
|
230 |
+
def __init__(self,
|
231 |
+
d_model=512,
|
232 |
+
nhead=9,
|
233 |
+
dim_feedforward=2048,
|
234 |
+
dropout=0.1):
|
235 |
+
super().__init__()
|
236 |
+
# Normalization Layer
|
237 |
+
self.self_attn_norm = nn.LayerNorm(d_model)
|
238 |
+
self.cross_attn_norm = nn.LayerNorm(d_model)
|
239 |
+
# Attention Layer
|
240 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
241 |
+
self.multihead_attn = nn.MultiheadAttention(d_model,
|
242 |
+
nhead,
|
243 |
+
dropout=dropout,
|
244 |
+
kdim=d_model,
|
245 |
+
vdim=d_model)
|
246 |
+
# FFN
|
247 |
+
self.ffn = nn.Sequential(nn.Linear(d_model, dim_feedforward),
|
248 |
+
nn.ReLU(True), nn.Dropout(dropout),
|
249 |
+
nn.LayerNorm(dim_feedforward),
|
250 |
+
nn.Linear(dim_feedforward, d_model))
|
251 |
+
# LayerNorm & Dropout
|
252 |
+
self.norm1 = nn.LayerNorm(d_model)
|
253 |
+
self.norm2 = nn.LayerNorm(d_model)
|
254 |
+
self.norm3 = nn.LayerNorm(d_model)
|
255 |
+
self.dropout1 = nn.Dropout(dropout)
|
256 |
+
self.dropout2 = nn.Dropout(dropout)
|
257 |
+
self.dropout3 = nn.Dropout(dropout)
|
258 |
+
|
259 |
+
def with_pos_embed(self, tensor, pos):
|
260 |
+
return tensor if pos is None else tensor + pos.to(tensor.device)
|
261 |
+
|
262 |
+
def forward(self, vis, txt, vis_pos, txt_pos, pad_mask):
|
263 |
+
'''
|
264 |
+
vis: 26*26, b, 512
|
265 |
+
txt: L, b, 512
|
266 |
+
vis_pos: 26*26, 1, 512
|
267 |
+
txt_pos: L, 1, 512
|
268 |
+
pad_mask: b, L
|
269 |
+
'''
|
270 |
+
# Self-Attention
|
271 |
+
vis2 = self.norm1(vis)
|
272 |
+
q = k = self.with_pos_embed(vis2, vis_pos)
|
273 |
+
vis2 = self.self_attn(q, k, value=vis2)[0]
|
274 |
+
vis2 = self.self_attn_norm(vis2)
|
275 |
+
vis = vis + self.dropout1(vis2)
|
276 |
+
# Cross-Attention
|
277 |
+
vis2 = self.norm2(vis)
|
278 |
+
vis2 = self.multihead_attn(query=self.with_pos_embed(vis2, vis_pos),
|
279 |
+
key=self.with_pos_embed(txt, txt_pos),
|
280 |
+
value=txt,
|
281 |
+
key_padding_mask=pad_mask)[0]
|
282 |
+
vis2 = self.cross_attn_norm(vis2)
|
283 |
+
vis = vis + self.dropout2(vis2)
|
284 |
+
# FFN
|
285 |
+
vis2 = self.norm3(vis)
|
286 |
+
vis2 = self.ffn(vis2)
|
287 |
+
vis = vis + self.dropout3(vis2)
|
288 |
+
return vis
|
289 |
+
|
290 |
+
class Text_Projector(nn.Module):
|
291 |
+
def __init__(self, args, in_channels=[512, 1024, 1024],
|
292 |
+
out_channels=[256, 512, 1024]):
|
293 |
+
|
294 |
+
super(Text_Projector, self).__init__()
|
295 |
+
|
296 |
+
self.proj = linear_layer(args, in_channels[2], out_channels[2])
|
297 |
+
self.ReLU = nn.ReLU(True)
|
298 |
+
|
299 |
+
def forward(self, text):
|
300 |
+
|
301 |
+
text = self.ReLU(text + self.proj(text))
|
302 |
+
|
303 |
+
return text
|
304 |
+
|
305 |
+
class Image_Projector(nn.Module):
|
306 |
+
def __init__(self, args, in_channels=[512, 1024, 1024],
|
307 |
+
out_channels=[256, 512, 1024]):
|
308 |
+
|
309 |
+
super(Image_Projector, self).__init__()
|
310 |
+
|
311 |
+
self.proj = linear_layer(args, in_channels[0], out_channels[2])
|
312 |
+
self.ReLU = nn.ReLU(True)
|
313 |
+
|
314 |
+
def forward(self, image):
|
315 |
+
|
316 |
+
image = self.ReLU(image + self.proj(image))
|
317 |
+
|
318 |
+
return image
|
319 |
+
|
320 |
+
class Adapter(nn.Module):
|
321 |
+
def __init__(self, c_in, reduction=4):
|
322 |
+
super(Adapter, self).__init__()
|
323 |
+
self.fc = nn.Sequential(
|
324 |
+
nn.Linear(c_in, c_in // reduction, bias=False),
|
325 |
+
nn.ReLU(inplace=True),
|
326 |
+
nn.Linear(c_in // reduction, c_in, bias=False),
|
327 |
+
nn.ReLU(inplace=True)
|
328 |
+
)
|
329 |
+
|
330 |
+
def forward(self, x):
|
331 |
+
x = self.fc(x)
|
332 |
+
return x
|
333 |
+
|
334 |
+
class GAP(nn.Module):
|
335 |
+
def __init__(self, kernel):
|
336 |
+
super(GAP, self).__init__()
|
337 |
+
self.k = kernel
|
338 |
+
# self.fc = nn.Linear(512, 1024)
|
339 |
+
def forward(self, x):
|
340 |
+
x = F.adaptive_avg_pool2d(x, self.k)
|
341 |
+
|
342 |
+
return x.squeeze(-1).squeeze(-1)
|
343 |
+
|
344 |
+
class AdaptiveSpatialFeatureFusion(nn.Module):
|
345 |
+
def __init__(self, args, in_channels=[512, 1024, 1024],
|
346 |
+
out_channels=[256, 512, 1024]):
|
347 |
+
|
348 |
+
super(AdaptiveSpatialFeatureFusion, self).__init__()
|
349 |
+
self.weight = nn.LayerNorm(out_channels[2])
|
350 |
+
self.proj = linear_layer(args, in_channels[0], out_channels[2])
|
351 |
+
|
352 |
+
def forward(self, feature_map1, feature_map2):
|
353 |
+
# feature_map1 : b, 1024, 1, 1
|
354 |
+
# feature_map2 : b, 512, 1, 1
|
355 |
+
feature_map2 = self.proj(feature_map2.squeeze(-1).squeeze(-1))
|
356 |
+
feature_map1 = feature_map1.squeeze(-1).squeeze(-1)
|
357 |
+
weights1 = torch.norm(feature_map1, dim=1).unsqueeze(-1)
|
358 |
+
weights2 = torch.norm(feature_map2, dim=1).unsqueeze(-1)
|
359 |
+
weights1 = weights1 / (weights1 + weights2)
|
360 |
+
weights2 = 1 - weights1
|
361 |
+
|
362 |
+
fused_feature_map = weights1 * feature_map1 + weights2 * feature_map2
|
363 |
+
# b, 1024
|
364 |
+
return fused_feature_map
|
365 |
+
|
366 |
+
class ModifiedAttentionPool2d(nn.Module):
|
367 |
+
def __init__(self,
|
368 |
+
spacial_dim: int,
|
369 |
+
embed_dim: int,
|
370 |
+
num_heads: int,
|
371 |
+
output_dim: int = None):
|
372 |
+
super().__init__()
|
373 |
+
self.spacial_dim = spacial_dim
|
374 |
+
self.positional_embedding = nn.Parameter(
|
375 |
+
torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5)
|
376 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
377 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
378 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
379 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
380 |
+
self.num_heads = num_heads
|
381 |
+
# residual
|
382 |
+
self.connect = nn.Sequential(
|
383 |
+
nn.Conv2d(embed_dim, output_dim, 1, stride=1, bias=False),
|
384 |
+
nn.BatchNorm2d(output_dim))
|
385 |
+
|
386 |
+
def resize_pos_embed(self, pos_embed, input_shpae):
|
387 |
+
"""Resize pos_embed weights.
|
388 |
+
Resize pos_embed using bicubic interpolate method.
|
389 |
+
Args:
|
390 |
+
pos_embed (torch.Tensor): Position embedding weights.
|
391 |
+
input_shpae (tuple): Tuple for (downsampled input image height,
|
392 |
+
downsampled input image width).
|
393 |
+
pos_shape (tuple): The resolution of downsampled origin training
|
394 |
+
image.
|
395 |
+
mode (str): Algorithm used for upsampling:
|
396 |
+
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
|
397 |
+
``'trilinear'``. Default: ``'nearest'``
|
398 |
+
Return:
|
399 |
+
torch.Tensor: The resized pos_embed of shape [B, C, L_new]
|
400 |
+
"""
|
401 |
+
assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]'
|
402 |
+
pos_h = pos_w = self.spacial_dim
|
403 |
+
cls_token_weight = pos_embed[:, 0]
|
404 |
+
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):]
|
405 |
+
pos_embed_weight = pos_embed_weight.reshape(
|
406 |
+
1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2)
|
407 |
+
pos_embed_weight = F.interpolate(pos_embed_weight,
|
408 |
+
size=input_shpae,
|
409 |
+
align_corners=False,
|
410 |
+
mode='bicubic')
|
411 |
+
cls_token_weight = cls_token_weight.unsqueeze(1)
|
412 |
+
pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2)
|
413 |
+
# pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1)
|
414 |
+
return pos_embed_weight.transpose(-2, -1)
|
415 |
+
|
416 |
+
def forward(self, x):
|
417 |
+
B, C, H, W = x.size()
|
418 |
+
res = self.connect(x)
|
419 |
+
x = x.reshape(B, C, -1) # NC(HW)
|
420 |
+
# x = torch.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(1+HW)
|
421 |
+
pos_embed = self.positional_embedding.unsqueeze(0)
|
422 |
+
pos_embed = self.resize_pos_embed(pos_embed, (H, W)) # NC(HW)
|
423 |
+
x = x + pos_embed.to(x.dtype) # NC(HW)
|
424 |
+
x = x.permute(2, 0, 1) # (HW)NC
|
425 |
+
x, _ = F.multi_head_attention_forward(
|
426 |
+
query=x,
|
427 |
+
key=x,
|
428 |
+
value=x,
|
429 |
+
embed_dim_to_check=x.shape[-1],
|
430 |
+
num_heads=self.num_heads,
|
431 |
+
q_proj_weight=self.q_proj.weight,
|
432 |
+
k_proj_weight=self.k_proj.weight,
|
433 |
+
v_proj_weight=self.v_proj.weight,
|
434 |
+
in_proj_weight=None,
|
435 |
+
in_proj_bias=torch.cat(
|
436 |
+
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
437 |
+
bias_k=None,
|
438 |
+
bias_v=None,
|
439 |
+
add_zero_attn=False,
|
440 |
+
dropout_p=0,
|
441 |
+
out_proj_weight=self.c_proj.weight,
|
442 |
+
out_proj_bias=self.c_proj.bias,
|
443 |
+
use_separate_proj_weight=True,
|
444 |
+
training=self.training,
|
445 |
+
need_weights=False)
|
446 |
+
xt = x[0]
|
447 |
+
x = x.permute(1, 2, 0).reshape(B, -1, H, W)
|
448 |
+
x = x + res
|
449 |
+
x = F.relu(x, True)
|
450 |
+
|
451 |
+
return x, xt
|
452 |
+
|
453 |
+
# modified
|
454 |
+
class FPN(nn.Module):
|
455 |
+
def __init__(self, args,
|
456 |
+
in_channels=[512, 1024, 1024],
|
457 |
+
out_channels=[256, 512, 1024, 1024]):
|
458 |
+
super(FPN, self).__init__()
|
459 |
+
input_resolution = args.input_size
|
460 |
+
heads = args.heads
|
461 |
+
output_dim = args.output_dim
|
462 |
+
embed_dim = args.emb_dim
|
463 |
+
# image projection
|
464 |
+
self.attn = ModifiedAttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
465 |
+
# text projection
|
466 |
+
self.txt_proj = linear_layer(args, in_channels[2], out_channels[2])
|
467 |
+
# fusion 1: v5 & seq -> f_5: b, 1024, 13, 13
|
468 |
+
self.f1_v_proj = conv_layer(in_channels[2], out_channels[2], 1, 0)
|
469 |
+
|
470 |
+
self.norm_layer = nn.Sequential(nn.BatchNorm2d(out_channels[2]),
|
471 |
+
nn.ReLU(True))
|
472 |
+
|
473 |
+
# fusion 2: v4 & fm -> f_4: b, 512, 26, 26
|
474 |
+
self.f2_v_proj = conv_layer(in_channels[1], out_channels[1], 3, 1)
|
475 |
+
self.f2_cat = conv_layer(out_channels[2] + out_channels[1],
|
476 |
+
out_channels[1], 1, 0)
|
477 |
+
# fusion 3: v3 & fm_mid -> f_3: b, 512, 52, 52
|
478 |
+
self.f3_v_proj = conv_layer(in_channels[0], out_channels[0], 3, 1)
|
479 |
+
self.f3_cat = conv_layer(out_channels[0] + out_channels[1],
|
480 |
+
out_channels[1], 1, 0)
|
481 |
+
# fusion 4: f_3 & f_4 & f_5 -> fq: b, 256, 26, 26
|
482 |
+
self.f4_proj5 = conv_layer(out_channels[2], out_channels[1], 3, 1)
|
483 |
+
self.f4_proj4 = conv_layer(out_channels[1], out_channels[1], 3, 1)
|
484 |
+
self.f4_proj3 = conv_layer(out_channels[1], out_channels[1], 3, 1)
|
485 |
+
# aggregation
|
486 |
+
self.aggr = conv_layer(3 * out_channels[1], out_channels[1], 1, 0)
|
487 |
+
self.coordconv = nn.Sequential(
|
488 |
+
CoordConv(out_channels[1], out_channels[1], 3, 1),
|
489 |
+
conv_layer(out_channels[1], out_channels[3], 3, 1))
|
490 |
+
|
491 |
+
def forward(self, imgs, text):
|
492 |
+
# v3, v4, v5: 256, 52, 52 / 512, 26, 26 / 1024, 13, 13
|
493 |
+
v3, v4, v5 = imgs
|
494 |
+
|
495 |
+
# fusion 1: b, 1024, 13, 13
|
496 |
+
# text projection: b, 1024 -> b, 1024
|
497 |
+
v5, _ = self.attn(v5)
|
498 |
+
text_ = self.txt_proj(text)
|
499 |
+
state = text_.unsqueeze(-1).unsqueeze(
|
500 |
+
-1)# b, 1024, 1, 1
|
501 |
+
|
502 |
+
f5 = self.f1_v_proj(v5) # b, 1024, 7, 7
|
503 |
+
|
504 |
+
f5 = self.norm_layer(f5 * state)
|
505 |
+
# fusion 2: b, 512, 26, 26
|
506 |
+
f4 = self.f2_v_proj(v4)
|
507 |
+
# f4 = f4.repeat(w2,1,1,1)
|
508 |
+
|
509 |
+
f5_ = F.interpolate(f5, scale_factor=2, mode='bilinear')
|
510 |
+
f4 = self.f2_cat(torch.cat([f4, f5_], dim=1))
|
511 |
+
# fusion 3: b, 256, 26, 26
|
512 |
+
f3 = self.f3_v_proj(v3)
|
513 |
+
f3 = F.avg_pool2d(f3, 2, 2)
|
514 |
+
# f3 = f3.repeat(w2, 1, 1, 1)
|
515 |
+
|
516 |
+
f3 = self.f3_cat(torch.cat([f3, f4], dim=1))
|
517 |
+
# fusion 4: b, 512, 13, 13 / b, 512, 26, 26 / b, 512, 26, 26
|
518 |
+
fq5 = self.f4_proj5(f5)
|
519 |
+
fq4 = self.f4_proj4(f4)
|
520 |
+
fq3 = self.f4_proj3(f3)
|
521 |
+
# query
|
522 |
+
fq5 = F.interpolate(fq5, scale_factor=2, mode='bilinear')
|
523 |
+
fq = torch.cat([fq3, fq4, fq5], dim=1)
|
524 |
+
fq = self.aggr(fq)
|
525 |
+
fq = self.coordconv(fq)
|
526 |
+
# fqq = fq.reshape(w1, w2, fq.shape[1], fq.shape[2], fq.shape[3])
|
527 |
+
# b, 512, 26, 26
|
528 |
+
|
529 |
+
# elif text.shape[0] != v3.shape[0]:
|
530 |
+
#
|
531 |
+
# text = self.txt_proj(text)
|
532 |
+
# state = text.unsqueeze(-1).unsqueeze(
|
533 |
+
# -1) # b, 1024, 1, 1
|
534 |
+
# state = state.view(v5.shape[0], int(text.shape[0] / v5.shape[0]), state.shape[1], state.shape[2], state.shape[3])
|
535 |
+
#
|
536 |
+
# f5 = self.f1_v_proj(v5) # b, 1024, 7, 7
|
537 |
+
# f5 = f5.unsqueeze(1)
|
538 |
+
# f5_ = f5 * state
|
539 |
+
# f5_ = f5_.view(-1, f5.shape[2], f5.shape[3], f5.shape[4])
|
540 |
+
# f5 = self.norm_layer(f5_)
|
541 |
+
# # fusion 2: b, 512, 26, 26
|
542 |
+
# f4 = self.f2_v_proj(v4)
|
543 |
+
# # f4 = f4.repeat(w2,1,1,1)
|
544 |
+
#
|
545 |
+
# f5_ = F.interpolate(f5, scale_factor=2, mode='bilinear')
|
546 |
+
# f4 = f4.repeat(int(f5_.shape[0] / f4.shape[0]), 1, 1, 1)
|
547 |
+
# f4 = self.f2_cat(torch.cat([f4, f5_], dim=1))
|
548 |
+
#
|
549 |
+
# # fusion 3: b, 256, 26, 26
|
550 |
+
# f3 = self.f3_v_proj(v3)
|
551 |
+
# f3 = F.avg_pool2d(f3, 2, 2)
|
552 |
+
# # f3 = f3.repeat(w2, 1, 1, 1)
|
553 |
+
# f3 = f3.repeat(int(f5_.shape[0] / f3.shape[0]), 1, 1, 1)
|
554 |
+
# f3 = self.f3_cat(torch.cat([f3, f4], dim=1))
|
555 |
+
# # fusion 4: b, 512, 13, 13 / b, 512, 26, 26 / b, 512, 26, 26
|
556 |
+
# fq5 = self.f4_proj5(f5)
|
557 |
+
# fq4 = self.f4_proj4(f4)
|
558 |
+
# fq3 = self.f4_proj3(f3)
|
559 |
+
# # query
|
560 |
+
# fq5 = F.interpolate(fq5, scale_factor=2, mode='bilinear')
|
561 |
+
# fq = torch.cat([fq3, fq4, fq5], dim=1)
|
562 |
+
# fq = self.aggr(fq)
|
563 |
+
# fq = self.coordconv(fq)
|
564 |
+
return fq
|
565 |
+
|
566 |
+
class ViTFPN(nn.Module):
|
567 |
+
def __init__(self, image_resolution,
|
568 |
+
in_channels=[512, 768, 768],
|
569 |
+
out_channels=[768, 768, 768, 512]):
|
570 |
+
super(ViTFPN, self).__init__()
|
571 |
+
# text projection
|
572 |
+
self.txt_proj = linear_layer(in_channels[0], out_channels[1])
|
573 |
+
# fusion 1: v5 & seq -> f_5: b, 1024, 13, 13
|
574 |
+
self.f1_v_proj = conv_layer(in_channels[1], out_channels[1], 1, 0)
|
575 |
+
self.norm_layer = nn.Sequential(nn.BatchNorm2d(out_channels[1]),
|
576 |
+
nn.ReLU(True))
|
577 |
+
# fusion 2: v4 & fm -> f_4: b, 512, 26, 26
|
578 |
+
self.f2_v_proj = conv_layer(in_channels[1], out_channels[1], 3, 1)
|
579 |
+
self.f2_cat = conv_layer(out_channels[0] + out_channels[0],
|
580 |
+
out_channels[0], 1, 0)
|
581 |
+
# fusion 3: v3 & fm_mid -> f_3: b, 512, 52, 52
|
582 |
+
self.f3_v_proj = conv_layer(in_channels[1], out_channels[1], 3, 1)
|
583 |
+
self.f3_cat = conv_layer(out_channels[0] + out_channels[1],
|
584 |
+
out_channels[1], 1, 0)
|
585 |
+
# fusion 4: f_3 & f_4 & f_5 -> fq: b, 256, 26, 26
|
586 |
+
self.f4_proj5 = conv_layer(out_channels[1], out_channels[0], 3, 1)
|
587 |
+
self.f4_proj4 = conv_layer(out_channels[0], out_channels[0], 3, 1)
|
588 |
+
self.f4_proj3 = conv_layer(out_channels[1], out_channels[1], 3, 1)
|
589 |
+
# aggregation
|
590 |
+
self.aggr = conv_layer(3 * out_channels[0], out_channels[0], 1, 0)
|
591 |
+
self.coordconv = nn.Sequential(
|
592 |
+
CoordConv(out_channels[0], out_channels[0], 3, 1),
|
593 |
+
conv_layer(out_channels[0], out_channels[-1], 3, 1))
|
594 |
+
|
595 |
+
self.attnpool = AttentionPool2d(image_resolution // 32, out_channels[-1],
|
596 |
+
8, out_channels[-1])
|
597 |
+
def forward(self, imgs, state, vis):
|
598 |
+
# v1 / v2 / b, 49, 1024/ b, 196, 512
|
599 |
+
v3, v4, v5 = imgs
|
600 |
+
# fusion 1: b, 1024, 13, 13
|
601 |
+
# text projection: b, 1024 -> b, 1024
|
602 |
+
state = self.txt_proj(state)
|
603 |
+
state = state.unsqueeze(-1).unsqueeze(
|
604 |
+
-1)# b, 1024, 1, 1
|
605 |
+
f5 = self.f1_v_proj(v5)
|
606 |
+
f5 = self.norm_layer(f5 * state)
|
607 |
+
# fusion 2: b, 512, 26, 26
|
608 |
+
f4 = self.f2_v_proj(v4)
|
609 |
+
b, c, h, w = f4.size()
|
610 |
+
f5_ = F.interpolate(f5, (h, w), mode='bilinear')
|
611 |
+
f4 = self.f2_cat(torch.cat([f4, f5_], dim=1))
|
612 |
+
|
613 |
+
# fusion 3: b, 256, 26, 26
|
614 |
+
f3 = self.f3_v_proj(v3)
|
615 |
+
f3 = F.avg_pool2d(f3, 2, 2)
|
616 |
+
# f3 = f3.repeat(w2, 1, 1, 1)
|
617 |
+
|
618 |
+
f3 = self.f3_cat(torch.cat([f3, f4], dim=1))
|
619 |
+
# fusion 4: b, 512, 13, 13 / b, 512, 26, 26 / b, 512, 26, 26
|
620 |
+
fq5 = self.f4_proj5(f5)
|
621 |
+
fq4 = self.f4_proj4(f4)
|
622 |
+
fq3 = self.f4_proj3(f3)
|
623 |
+
# query
|
624 |
+
fq5 = F.interpolate(fq5, (h, w), mode='bilinear')
|
625 |
+
fq = torch.cat([fq3, fq4, fq5], dim=1)
|
626 |
+
fq = self.aggr(fq)
|
627 |
+
if not vis:
|
628 |
+
fq = self.coordconv(fq)
|
629 |
+
fq = self.attnpool(fq)
|
630 |
+
# b, 512, 26, 26
|
631 |
+
return fq
|
632 |
+
|
633 |
+
|
cisen/model/segmenter.py
ADDED
@@ -0,0 +1,2045 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
+
from .clip import build_model, build_promptlearner, build_modified_model, PromptLearner, build_lclip_model
|
7 |
+
from torch.cuda.amp import autocast as autocast
|
8 |
+
from timm.models.layers import trunc_normal_ as __call_trunc_normal_
|
9 |
+
from timm.models.layers import variance_scaling_
|
10 |
+
from einops import rearrange, repeat
|
11 |
+
from loguru import logger
|
12 |
+
from transformers import AlignProcessor, AlignModel
|
13 |
+
from sklearn.metrics import classification_report
|
14 |
+
from huggingface_hub import PyTorchModelHubMixin
|
15 |
+
from .layers import FPN, TransformerDecoder, ViTFPN, AdaptiveSpatialFeatureFusion, Text_Projector, Image_Projector, Adapter, GAP
|
16 |
+
from cisen.model.clip import CLIP
|
17 |
+
def lecun_normal_(tensor):
|
18 |
+
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
19 |
+
|
20 |
+
def trunc_normal_(tensor, mean=0.0, std=1.0):
|
21 |
+
__call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std)
|
22 |
+
|
23 |
+
class CISEN_vit(nn.Module, PyTorchModelHubMixin):
|
24 |
+
def __init__(self, cfg):
|
25 |
+
super().__init__()
|
26 |
+
# Vision & Text Encoder & Label Encoder
|
27 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
28 |
+
map_location="cpu").eval()
|
29 |
+
|
30 |
+
backbone, image_resolution, vision_heads, embed_dim, vision_width, patch_size = build_model(clip_model.state_dict(), cfg.word_len)
|
31 |
+
self.backbone = backbone.float()
|
32 |
+
self.patch_emb = image_resolution // patch_size
|
33 |
+
cfg.image_resolution = image_resolution
|
34 |
+
cfg.input_size = image_resolution
|
35 |
+
cfg.heads = vision_heads // 32
|
36 |
+
cfg.emb_dim = vision_width
|
37 |
+
cfg.output_dim = embed_dim
|
38 |
+
|
39 |
+
# multi-scale adapter
|
40 |
+
# Multi-Modal FPN
|
41 |
+
self.FPN = ViTFPN(image_resolution, in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
42 |
+
# Fined-grained Fusion
|
43 |
+
# self.FGFusion = TransformerDecoder(num_layers=cfg.num_layers,
|
44 |
+
# d_model=cfg.vis_dim,
|
45 |
+
# nhead=cfg.num_head,
|
46 |
+
# dim_ffn=cfg.dim_ffn,
|
47 |
+
# dropout=cfg.dropout,
|
48 |
+
# return_intermediate=cfg.intermediate)
|
49 |
+
|
50 |
+
# image-text transformer
|
51 |
+
# self.trans = nn.Linear(1024, 1024)
|
52 |
+
self.ADP = Adapter(cfg.output_dim, 4)
|
53 |
+
# parameter
|
54 |
+
self.ratio = cfg.ratio
|
55 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
56 |
+
self.share_temperature = True
|
57 |
+
self.ce = nn.CrossEntropyLoss()
|
58 |
+
self.ms_adaptor = nn.ModuleList(
|
59 |
+
[
|
60 |
+
nn.Sequential(
|
61 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
62 |
+
nn.GroupNorm(32, cfg.emb_dim),
|
63 |
+
nn.GELU(),
|
64 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
65 |
+
),
|
66 |
+
nn.Sequential(
|
67 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
68 |
+
),
|
69 |
+
nn.Sequential(
|
70 |
+
nn.Identity(),
|
71 |
+
),
|
72 |
+
nn.Sequential(
|
73 |
+
nn.MaxPool2d(2),
|
74 |
+
),
|
75 |
+
|
76 |
+
]
|
77 |
+
)
|
78 |
+
|
79 |
+
self.ms_adaptor.apply(self.init_adaptor)
|
80 |
+
def init_adaptor(self, m):
|
81 |
+
if isinstance(m, nn.Conv2d):
|
82 |
+
lecun_normal_(m.weight)
|
83 |
+
if m.bias is not None:
|
84 |
+
nn.init.constant_(m.bias, 0)
|
85 |
+
elif isinstance(m, nn.GroupNorm):
|
86 |
+
nn.init.constant_(m.bias, 0)
|
87 |
+
nn.init.constant_(m.weight, 1.0)
|
88 |
+
elif isinstance(m, nn.ConvTranspose2d):
|
89 |
+
lecun_normal_(m.weight)
|
90 |
+
if m.bias is not None:
|
91 |
+
nn.init.zeros_(m.bias)
|
92 |
+
# self.fc = nn.Linear(512, cfg.num_classes)
|
93 |
+
|
94 |
+
|
95 |
+
def IT_loss(self, image_features, text_features):
|
96 |
+
# b, 1024 / b, 1024
|
97 |
+
batch = image_features.shape[0]
|
98 |
+
# # normalized features
|
99 |
+
image_features = image_features / image_features.norm(dim=-1,
|
100 |
+
keepdim=True)
|
101 |
+
text_features = text_features / text_features.norm(dim=-1,
|
102 |
+
keepdim=True)
|
103 |
+
|
104 |
+
# cosine similarity as logits
|
105 |
+
logit_scale = self.logit_scale.exp()
|
106 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
107 |
+
logits_per_text = logits_per_image.t()
|
108 |
+
|
109 |
+
# shape = [global_batch_size, global_batch_size]
|
110 |
+
contrastive_labels = torch.arange(batch).to(logits_per_image.device)
|
111 |
+
contrastive_loss = (self.ce(logits_per_image, contrastive_labels) + self.ce(logits_per_text, contrastive_labels)) * 0.5
|
112 |
+
|
113 |
+
|
114 |
+
return contrastive_loss
|
115 |
+
|
116 |
+
def forward(self, img, txt, stage):
|
117 |
+
|
118 |
+
if stage == '1st':
|
119 |
+
'''
|
120 |
+
img: b, 3, h, w
|
121 |
+
word: b, words
|
122 |
+
word_mask: b, words
|
123 |
+
mask: b, 1, h, w
|
124 |
+
stage: 1st or 2nd stage
|
125 |
+
'''
|
126 |
+
# padding mask used in decoder
|
127 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
128 |
+
|
129 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
130 |
+
# word: b, length, 512
|
131 |
+
# text: b, 1024
|
132 |
+
# image: b, 1024
|
133 |
+
vis, image = self.backbone.encode_image(img)
|
134 |
+
|
135 |
+
word, text = self.backbone.encode_text(txt)
|
136 |
+
|
137 |
+
x = self.ADP(image)
|
138 |
+
|
139 |
+
x = self.ratio * x + (1-self.ratio) * image
|
140 |
+
|
141 |
+
# b, 1024
|
142 |
+
# fq_t = self.FPN(vis, x)
|
143 |
+
#
|
144 |
+
# fv_t = self.gap(fq_t)
|
145 |
+
|
146 |
+
loss1 = self.IT_loss(x, text)
|
147 |
+
|
148 |
+
loss = loss1
|
149 |
+
|
150 |
+
ft = text
|
151 |
+
fi = x
|
152 |
+
fv = None
|
153 |
+
elif stage == '2nd':
|
154 |
+
'''
|
155 |
+
img: b, 3, h, w
|
156 |
+
word: b, words
|
157 |
+
word_mask: b, words
|
158 |
+
mask: b, 1, h, w
|
159 |
+
stage: 1st or 2nd stage
|
160 |
+
'''
|
161 |
+
# padding mask used in decoder
|
162 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
163 |
+
|
164 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
165 |
+
# word: b, length, 512
|
166 |
+
# text: b, 1024
|
167 |
+
# image: b, 1024
|
168 |
+
vis, image = self.backbone.encode_image(img)
|
169 |
+
|
170 |
+
word, text = self.backbone.encode_text(txt)
|
171 |
+
|
172 |
+
x = self.ADP(image)
|
173 |
+
|
174 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
175 |
+
# Construct multi-scale feats
|
176 |
+
vis_trans = []
|
177 |
+
for i in range(len(self.ms_adaptor)):
|
178 |
+
x_ = rearrange(
|
179 |
+
vis[i],
|
180 |
+
"b (h w) c -> b c h w",
|
181 |
+
h=self.patch_emb,
|
182 |
+
w=self.patch_emb,
|
183 |
+
).contiguous()
|
184 |
+
|
185 |
+
feats = self.ms_adaptor[i](x_)
|
186 |
+
|
187 |
+
vis_trans.append(feats)
|
188 |
+
|
189 |
+
# fq = self.FPN(vis, x_t)
|
190 |
+
fv_t = self.FPN(vis_trans[1:], x, False)
|
191 |
+
# fv_t = self.gap(fq_t)
|
192 |
+
|
193 |
+
# b, 1024
|
194 |
+
|
195 |
+
loss2 = self.IT_loss(fv_t, text)
|
196 |
+
|
197 |
+
loss = (loss2)
|
198 |
+
fv = fv_t
|
199 |
+
ft = text
|
200 |
+
fi = x
|
201 |
+
|
202 |
+
|
203 |
+
return loss, fv, fi, ft
|
204 |
+
|
205 |
+
def visualize(self, img, txt):
|
206 |
+
vis, image = self.backbone.encode_image(img)
|
207 |
+
word, text = self.backbone.encode_text(txt)
|
208 |
+
|
209 |
+
x = self.ADP(image)
|
210 |
+
|
211 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
212 |
+
# Construct multi-scale feats
|
213 |
+
vis_trans = []
|
214 |
+
for i in range(len(self.ms_adaptor)):
|
215 |
+
x_ = rearrange(
|
216 |
+
vis[i],
|
217 |
+
"b (h w) c -> b c h w",
|
218 |
+
h=self.patch_emb,
|
219 |
+
w=self.patch_emb,
|
220 |
+
).contiguous()
|
221 |
+
|
222 |
+
feats = self.ms_adaptor[i](x_)
|
223 |
+
|
224 |
+
vis_trans.append(feats)
|
225 |
+
|
226 |
+
# fq = self.FPN(vis, x_t)
|
227 |
+
fv_t = self.FPN(vis_trans[1:], x, True)
|
228 |
+
ft_t = self.FPN(vis_trans[1:], text, True)
|
229 |
+
return vis, fv_t, ft_t
|
230 |
+
|
231 |
+
class CISEN_rsvit(nn.Module, PyTorchModelHubMixin):
|
232 |
+
def __init__(self, cfg):
|
233 |
+
super().__init__()
|
234 |
+
# Vision & Text Encoder & Label Encoder
|
235 |
+
clip_model = torch.load(cfg.clip_pretrain,
|
236 |
+
map_location="cpu")
|
237 |
+
|
238 |
+
backbone, image_resolution, vision_heads, embed_dim, vision_width, patch_size = build_model(clip_model, cfg.word_len)
|
239 |
+
self.backbone = backbone.float()
|
240 |
+
self.patch_emb = image_resolution // patch_size
|
241 |
+
|
242 |
+
cfg.image_resolution = image_resolution
|
243 |
+
cfg.input_size = image_resolution
|
244 |
+
cfg.heads = vision_heads // 32
|
245 |
+
cfg.emb_dim = vision_width
|
246 |
+
cfg.output_dim = embed_dim
|
247 |
+
|
248 |
+
# multi-scale adapter
|
249 |
+
# Multi-Modal FPN
|
250 |
+
self.FPN = ViTFPN(image_resolution, in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
251 |
+
# Fined-grained Fusion
|
252 |
+
# self.FGFusion = TransformerDecoder(num_layers=cfg.num_layers,
|
253 |
+
# d_model=cfg.vis_dim,
|
254 |
+
# nhead=cfg.num_head,
|
255 |
+
# dim_ffn=cfg.dim_ffn,
|
256 |
+
# dropout=cfg.dropout,
|
257 |
+
# return_intermediate=cfg.intermediate)
|
258 |
+
|
259 |
+
# image-text transformer
|
260 |
+
# self.trans = nn.Linear(1024, 1024)
|
261 |
+
self.ADP = Adapter(cfg.output_dim, 4)
|
262 |
+
# parameter
|
263 |
+
self.ratio = cfg.ratio
|
264 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
265 |
+
self.share_temperature = True
|
266 |
+
self.ce = nn.CrossEntropyLoss()
|
267 |
+
self.ms_adaptor = nn.ModuleList(
|
268 |
+
[
|
269 |
+
nn.Sequential(
|
270 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
271 |
+
nn.GroupNorm(32, cfg.emb_dim),
|
272 |
+
nn.GELU(),
|
273 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
274 |
+
),
|
275 |
+
nn.Sequential(
|
276 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
277 |
+
),
|
278 |
+
nn.Sequential(
|
279 |
+
nn.Identity(),
|
280 |
+
),
|
281 |
+
nn.Sequential(
|
282 |
+
nn.MaxPool2d(2),
|
283 |
+
),
|
284 |
+
|
285 |
+
]
|
286 |
+
)
|
287 |
+
|
288 |
+
self.ms_adaptor.apply(self.init_adaptor)
|
289 |
+
def init_adaptor(self, m):
|
290 |
+
if isinstance(m, nn.Conv2d):
|
291 |
+
lecun_normal_(m.weight)
|
292 |
+
if m.bias is not None:
|
293 |
+
nn.init.constant_(m.bias, 0)
|
294 |
+
elif isinstance(m, nn.GroupNorm):
|
295 |
+
nn.init.constant_(m.bias, 0)
|
296 |
+
nn.init.constant_(m.weight, 1.0)
|
297 |
+
elif isinstance(m, nn.ConvTranspose2d):
|
298 |
+
lecun_normal_(m.weight)
|
299 |
+
if m.bias is not None:
|
300 |
+
nn.init.zeros_(m.bias)
|
301 |
+
# self.fc = nn.Linear(512, cfg.num_classes)
|
302 |
+
|
303 |
+
|
304 |
+
def IT_loss(self, image_features, text_features):
|
305 |
+
# b, 1024 / b, 1024
|
306 |
+
batch = image_features.shape[0]
|
307 |
+
# # normalized features
|
308 |
+
image_features = image_features / image_features.norm(dim=-1,
|
309 |
+
keepdim=True)
|
310 |
+
text_features = text_features / text_features.norm(dim=-1,
|
311 |
+
keepdim=True)
|
312 |
+
|
313 |
+
# cosine similarity as logits
|
314 |
+
logit_scale = self.logit_scale.exp()
|
315 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
316 |
+
logits_per_text = logits_per_image.t()
|
317 |
+
|
318 |
+
# shape = [global_batch_size, global_batch_size]
|
319 |
+
contrastive_labels = torch.arange(batch).to(logits_per_image.device)
|
320 |
+
contrastive_loss = (self.ce(logits_per_image, contrastive_labels) + self.ce(logits_per_text, contrastive_labels)) * 0.5
|
321 |
+
|
322 |
+
|
323 |
+
return contrastive_loss
|
324 |
+
def image_encode(self, img):
|
325 |
+
vis, image = self.backbone.encode_image(img)
|
326 |
+
|
327 |
+
x = self.ADP(image)
|
328 |
+
|
329 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
330 |
+
return x
|
331 |
+
|
332 |
+
def text_encode(self, txt):
|
333 |
+
|
334 |
+
word, text = self.backbone.encode_text(txt)
|
335 |
+
|
336 |
+
return text
|
337 |
+
|
338 |
+
def forward(self, img, txt, stage):
|
339 |
+
|
340 |
+
if stage == '1st':
|
341 |
+
'''
|
342 |
+
img: b, 3, h, w
|
343 |
+
word: b, words
|
344 |
+
word_mask: b, words
|
345 |
+
mask: b, 1, h, w
|
346 |
+
stage: 1st or 2nd stage
|
347 |
+
'''
|
348 |
+
# padding mask used in decoder
|
349 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
350 |
+
|
351 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
352 |
+
# word: b, length, 512
|
353 |
+
# text: b, 1024
|
354 |
+
# image: b, 1024
|
355 |
+
vis, image = self.backbone.encode_image(img)
|
356 |
+
|
357 |
+
word, text = self.backbone.encode_text(txt)
|
358 |
+
|
359 |
+
x = self.ADP(image)
|
360 |
+
|
361 |
+
x = self.ratio * x + (1-self.ratio) * image
|
362 |
+
|
363 |
+
# b, 1024
|
364 |
+
# fq_t = self.FPN(vis, x)
|
365 |
+
#
|
366 |
+
# fv_t = self.gap(fq_t)
|
367 |
+
|
368 |
+
loss1 = self.IT_loss(x, text)
|
369 |
+
|
370 |
+
loss = loss1
|
371 |
+
|
372 |
+
ft = text
|
373 |
+
fi = x
|
374 |
+
fv = None
|
375 |
+
elif stage == '2nd':
|
376 |
+
'''
|
377 |
+
img: b, 3, h, w
|
378 |
+
word: b, words
|
379 |
+
word_mask: b, words
|
380 |
+
mask: b, 1, h, w
|
381 |
+
stage: 1st or 2nd stage
|
382 |
+
'''
|
383 |
+
# padding mask used in decoder
|
384 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
385 |
+
|
386 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
387 |
+
# word: b, length, 512
|
388 |
+
# text: b, 1024
|
389 |
+
# image: b, 1024
|
390 |
+
vis, image = self.backbone.encode_image(img)
|
391 |
+
|
392 |
+
word, text = self.backbone.encode_text(txt)
|
393 |
+
|
394 |
+
x = self.ADP(image)
|
395 |
+
|
396 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
397 |
+
# Construct multi-scale feats
|
398 |
+
vis_trans = []
|
399 |
+
for i in range(len(self.ms_adaptor)):
|
400 |
+
x_ = rearrange(
|
401 |
+
vis[i],
|
402 |
+
"b (h w) c -> b c h w",
|
403 |
+
h=self.patch_emb,
|
404 |
+
w=self.patch_emb,
|
405 |
+
).contiguous()
|
406 |
+
|
407 |
+
feats = self.ms_adaptor[i](x_)
|
408 |
+
|
409 |
+
vis_trans.append(feats)
|
410 |
+
|
411 |
+
# fq = self.FPN(vis, x_t)
|
412 |
+
fv_t = self.FPN(vis_trans[1:], x, False)
|
413 |
+
# fv_t = self.gap(fq_t)
|
414 |
+
|
415 |
+
# b, 1024
|
416 |
+
|
417 |
+
loss2 = self.IT_loss(fv_t, text)
|
418 |
+
|
419 |
+
loss = (loss2)
|
420 |
+
fv = fv_t
|
421 |
+
ft = text
|
422 |
+
fi = x
|
423 |
+
|
424 |
+
|
425 |
+
return loss, fv, fi, ft
|
426 |
+
|
427 |
+
def visualize(self, img):
|
428 |
+
vis, image = self.backbone.encode_image(img)
|
429 |
+
|
430 |
+
|
431 |
+
x = self.ADP(image)
|
432 |
+
|
433 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
434 |
+
# Construct multi-scale feats
|
435 |
+
vis_trans = []
|
436 |
+
for i in range(len(self.ms_adaptor)):
|
437 |
+
x_ = rearrange(
|
438 |
+
vis[i],
|
439 |
+
"b (h w) c -> b c h w",
|
440 |
+
h=self.patch_emb,
|
441 |
+
w=self.patch_emb,
|
442 |
+
).contiguous()
|
443 |
+
|
444 |
+
feats = self.ms_adaptor[i](x_)
|
445 |
+
|
446 |
+
vis_trans.append(feats)
|
447 |
+
|
448 |
+
|
449 |
+
fv_t = self.FPN(vis_trans[1:], x, True)
|
450 |
+
return vis, fv_t
|
451 |
+
|
452 |
+
class CISEN_vit(nn.Module, PyTorchModelHubMixin):
|
453 |
+
def __init__(self, cfg):
|
454 |
+
super().__init__()
|
455 |
+
# Vision & Text Encoder & Label Encoder
|
456 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
457 |
+
map_location="cpu").eval()
|
458 |
+
|
459 |
+
backbone, image_resolution, vision_heads, embed_dim, vision_width, patch_size = build_model(clip_model.state_dict(), cfg.word_len)
|
460 |
+
self.backbone = backbone.float()
|
461 |
+
self.patch_emb = image_resolution // patch_size
|
462 |
+
cfg.image_resolution = image_resolution
|
463 |
+
cfg.input_size = image_resolution
|
464 |
+
cfg.heads = vision_heads // 32
|
465 |
+
cfg.emb_dim = vision_width
|
466 |
+
cfg.output_dim = embed_dim
|
467 |
+
|
468 |
+
# multi-scale adapter
|
469 |
+
# Multi-Modal FPN
|
470 |
+
self.FPN = ViTFPN(cfg, in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
471 |
+
# Fined-grained Fusion
|
472 |
+
# self.FGFusion = TransformerDecoder(num_layers=cfg.num_layers,
|
473 |
+
# d_model=cfg.vis_dim,
|
474 |
+
# nhead=cfg.num_head,
|
475 |
+
# dim_ffn=cfg.dim_ffn,
|
476 |
+
# dropout=cfg.dropout,
|
477 |
+
# return_intermediate=cfg.intermediate)
|
478 |
+
|
479 |
+
# image-text transformer
|
480 |
+
# self.trans = nn.Linear(1024, 1024)
|
481 |
+
self.ADP = Adapter(cfg.output_dim, 4)
|
482 |
+
# parameter
|
483 |
+
self.ratio = cfg.ratio
|
484 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
485 |
+
self.share_temperature = True
|
486 |
+
self.ce = nn.CrossEntropyLoss()
|
487 |
+
self.ms_adaptor = nn.ModuleList(
|
488 |
+
[
|
489 |
+
nn.Sequential(
|
490 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
491 |
+
nn.GroupNorm(32, cfg.emb_dim),
|
492 |
+
nn.GELU(),
|
493 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
494 |
+
),
|
495 |
+
nn.Sequential(
|
496 |
+
nn.ConvTranspose2d(cfg.emb_dim, cfg.emb_dim, 2, 2),
|
497 |
+
),
|
498 |
+
nn.Sequential(
|
499 |
+
nn.Identity(),
|
500 |
+
),
|
501 |
+
nn.Sequential(
|
502 |
+
nn.MaxPool2d(2),
|
503 |
+
),
|
504 |
+
|
505 |
+
]
|
506 |
+
)
|
507 |
+
|
508 |
+
self.ms_adaptor.apply(self.init_adaptor)
|
509 |
+
def init_adaptor(self, m):
|
510 |
+
if isinstance(m, nn.Conv2d):
|
511 |
+
lecun_normal_(m.weight)
|
512 |
+
if m.bias is not None:
|
513 |
+
nn.init.constant_(m.bias, 0)
|
514 |
+
elif isinstance(m, nn.GroupNorm):
|
515 |
+
nn.init.constant_(m.bias, 0)
|
516 |
+
nn.init.constant_(m.weight, 1.0)
|
517 |
+
elif isinstance(m, nn.ConvTranspose2d):
|
518 |
+
lecun_normal_(m.weight)
|
519 |
+
if m.bias is not None:
|
520 |
+
nn.init.zeros_(m.bias)
|
521 |
+
# self.fc = nn.Linear(512, cfg.num_classes)
|
522 |
+
|
523 |
+
|
524 |
+
def IT_loss(self, image_features, text_features):
|
525 |
+
# b, 1024 / b, 1024
|
526 |
+
batch = image_features.shape[0]
|
527 |
+
# # normalized features
|
528 |
+
image_features = image_features / image_features.norm(dim=-1,
|
529 |
+
keepdim=True)
|
530 |
+
text_features = text_features / text_features.norm(dim=-1,
|
531 |
+
keepdim=True)
|
532 |
+
|
533 |
+
# cosine similarity as logits
|
534 |
+
logit_scale = self.logit_scale.exp()
|
535 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
536 |
+
logits_per_text = logits_per_image.t()
|
537 |
+
|
538 |
+
# shape = [global_batch_size, global_batch_size]
|
539 |
+
contrastive_labels = torch.arange(batch).to(logits_per_image.device)
|
540 |
+
contrastive_loss = (self.ce(logits_per_image, contrastive_labels) + self.ce(logits_per_text, contrastive_labels)) * 0.5
|
541 |
+
|
542 |
+
|
543 |
+
return contrastive_loss
|
544 |
+
|
545 |
+
def forward(self, img, txt, stage):
|
546 |
+
|
547 |
+
if stage == '1st':
|
548 |
+
'''
|
549 |
+
img: b, 3, h, w
|
550 |
+
word: b, words
|
551 |
+
word_mask: b, words
|
552 |
+
mask: b, 1, h, w
|
553 |
+
stage: 1st or 2nd stage
|
554 |
+
'''
|
555 |
+
# padding mask used in decoder
|
556 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
557 |
+
|
558 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
559 |
+
# word: b, length, 512
|
560 |
+
# text: b, 1024
|
561 |
+
# image: b, 1024
|
562 |
+
vis, image = self.backbone.encode_image(img)
|
563 |
+
|
564 |
+
word, text = self.backbone.encode_text(txt)
|
565 |
+
|
566 |
+
x = self.ADP(image)
|
567 |
+
|
568 |
+
x = self.ratio * x + (1-self.ratio) * image
|
569 |
+
|
570 |
+
# b, 1024
|
571 |
+
# fq_t = self.FPN(vis, x)
|
572 |
+
#
|
573 |
+
# fv_t = self.gap(fq_t)
|
574 |
+
|
575 |
+
loss1 = self.IT_loss(x, text)
|
576 |
+
|
577 |
+
loss = loss1
|
578 |
+
|
579 |
+
ft = text
|
580 |
+
fi = x
|
581 |
+
fv = None
|
582 |
+
elif stage == '2nd':
|
583 |
+
'''
|
584 |
+
img: b, 3, h, w
|
585 |
+
word: b, words
|
586 |
+
word_mask: b, words
|
587 |
+
mask: b, 1, h, w
|
588 |
+
stage: 1st or 2nd stage
|
589 |
+
'''
|
590 |
+
# padding mask used in decoder
|
591 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
592 |
+
|
593 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
594 |
+
# word: b, length, 512
|
595 |
+
# text: b, 1024
|
596 |
+
# image: b, 1024
|
597 |
+
vis, image = self.backbone.encode_image(img)
|
598 |
+
|
599 |
+
word, text = self.backbone.encode_text(txt)
|
600 |
+
|
601 |
+
x = self.ADP(image)
|
602 |
+
|
603 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
604 |
+
# Construct multi-scale feats
|
605 |
+
vis_trans = []
|
606 |
+
for i in range(len(self.ms_adaptor)):
|
607 |
+
x_ = rearrange(
|
608 |
+
vis[i],
|
609 |
+
"b (h w) c -> b c h w",
|
610 |
+
h=self.patch_emb,
|
611 |
+
w=self.patch_emb,
|
612 |
+
).contiguous()
|
613 |
+
|
614 |
+
feats = self.ms_adaptor[i](x_)
|
615 |
+
|
616 |
+
vis_trans.append(feats)
|
617 |
+
|
618 |
+
# fq = self.FPN(vis, x_t)
|
619 |
+
fv_t = self.FPN(vis_trans[1:], x, False)
|
620 |
+
# fv_t = self.gap(fq_t)
|
621 |
+
|
622 |
+
# b, 1024
|
623 |
+
|
624 |
+
loss2 = self.IT_loss(fv_t, text)
|
625 |
+
|
626 |
+
loss = (loss2)
|
627 |
+
fv = fv_t
|
628 |
+
ft = text
|
629 |
+
fi = x
|
630 |
+
|
631 |
+
|
632 |
+
return loss, fv, fi, ft
|
633 |
+
|
634 |
+
def visualize(self, img, txt):
|
635 |
+
vis, image = self.backbone.encode_image(img)
|
636 |
+
word, text = self.backbone.encode_text(txt)
|
637 |
+
|
638 |
+
x = self.ADP(image)
|
639 |
+
|
640 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
641 |
+
# Construct multi-scale feats
|
642 |
+
vis_trans = []
|
643 |
+
for i in range(len(self.ms_adaptor)):
|
644 |
+
x_ = rearrange(
|
645 |
+
vis[i],
|
646 |
+
"b (h w) c -> b c h w",
|
647 |
+
h=self.patch_emb,
|
648 |
+
w=self.patch_emb,
|
649 |
+
).contiguous()
|
650 |
+
|
651 |
+
feats = self.ms_adaptor[i](x_)
|
652 |
+
|
653 |
+
vis_trans.append(feats)
|
654 |
+
|
655 |
+
# fq = self.FPN(vis, x_t)
|
656 |
+
fv_t = self.FPN(vis_trans[1:], x, True)
|
657 |
+
ft_t = self.FPN(vis_trans[1:], text, True)
|
658 |
+
return vis, fv_t, ft_t
|
659 |
+
|
660 |
+
class CISEN_rsvit_classification(nn.Module):
|
661 |
+
def __init__(self, cfg):
|
662 |
+
super().__init__()
|
663 |
+
# Vision & Text Encoder & Label Encoder
|
664 |
+
clip_model = torch.load(cfg.clip_pretrain,
|
665 |
+
map_location="cpu")
|
666 |
+
|
667 |
+
backbone, image_resolution, vision_heads, embed_dim, vision_width, patch_size = build_model(clip_model, cfg.word_len)
|
668 |
+
self.backbone = backbone.float()
|
669 |
+
self.patch_emb = image_resolution // patch_size
|
670 |
+
num_classes_fc = 512
|
671 |
+
num_classes_output = 10
|
672 |
+
self.num_classes_fc = num_classes_fc # Number of classes for fully connected layer
|
673 |
+
self.num_classes_output = num_classes_output # Number of classes for output layer
|
674 |
+
|
675 |
+
# Add a fully connected layer
|
676 |
+
self.fc = nn.Linear(in_features=cfg.vis_dim, out_features=num_classes_fc)
|
677 |
+
|
678 |
+
# Add an output layer for multi-label classification
|
679 |
+
self.output_layer = nn.Linear(in_features=num_classes_fc, out_features=num_classes_output)
|
680 |
+
self.criterion = nn.BCEWithLogitsLoss()
|
681 |
+
cfg.image_resolution = image_resolution
|
682 |
+
cfg.input_size = image_resolution
|
683 |
+
cfg.heads = vision_heads // 32
|
684 |
+
cfg.emb_dim = vision_width
|
685 |
+
cfg.output_dim = embed_dim
|
686 |
+
|
687 |
+
|
688 |
+
def IT_loss(self, labels, labels_pre):
|
689 |
+
|
690 |
+
labels = labels.squeeze(1)
|
691 |
+
|
692 |
+
loss = self.criterion(labels_pre, labels)
|
693 |
+
return loss
|
694 |
+
|
695 |
+
def forward(self, img, labels):
|
696 |
+
_, image_features = self.backbone.encode_image(img)
|
697 |
+
# Fully connected layer
|
698 |
+
fc_output = self.fc(image_features)
|
699 |
+
# Apply ReLU activation function
|
700 |
+
fc_output = F.relu(fc_output)
|
701 |
+
# Output layer for multi-label classification
|
702 |
+
|
703 |
+
labels_pre = self.output_layer(fc_output)
|
704 |
+
|
705 |
+
loss2 = self.IT_loss(labels, labels_pre)
|
706 |
+
|
707 |
+
return labels_pre, loss2
|
708 |
+
|
709 |
+
|
710 |
+
class CISEN_new(nn.Module):
|
711 |
+
def __init__(self, cfg):
|
712 |
+
super().__init__()
|
713 |
+
# Vision & Text Encoder & Label Encoder
|
714 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
715 |
+
map_location="cpu").eval()
|
716 |
+
|
717 |
+
backbone, image_resolution, vision_heads, embed_dim, vision_width, _ = build_model(clip_model.state_dict(), cfg.word_len)
|
718 |
+
self.backbone = backbone.float()
|
719 |
+
cfg.input_size = image_resolution
|
720 |
+
cfg.heads = vision_heads
|
721 |
+
cfg.emb_dim = vision_width * 32
|
722 |
+
cfg.output_dim = embed_dim
|
723 |
+
# Multi-Modal FPN
|
724 |
+
self.FPN = FPN(cfg, in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
725 |
+
# Fined-grained Fusion
|
726 |
+
# self.FGFusion = TransformerDecoder(num_layers=cfg.num_layers,
|
727 |
+
# d_model=cfg.vis_dim,
|
728 |
+
# nhead=cfg.num_head,
|
729 |
+
# dim_ffn=cfg.dim_ffn,
|
730 |
+
# dropout=cfg.dropout,
|
731 |
+
# return_intermediate=cfg.intermediate)
|
732 |
+
|
733 |
+
# image-text transformer
|
734 |
+
# self.trans = nn.Linear(1024, 1024)
|
735 |
+
self.ADP = Adapter(cfg.output_dim, 4)
|
736 |
+
self.gap = GAP((1,1))
|
737 |
+
# parameter
|
738 |
+
self.ratio = cfg.ratio
|
739 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
740 |
+
self.share_temperature = True
|
741 |
+
self.margin = 1
|
742 |
+
self.eps = 1e-3
|
743 |
+
self.ce = nn.CrossEntropyLoss()
|
744 |
+
#1st stage
|
745 |
+
self.lamda1 = cfg.lamda1
|
746 |
+
self.lamda2 = cfg.lamda2
|
747 |
+
self.avg = nn.AdaptiveAvgPool2d((1,1))
|
748 |
+
# self.fc = nn.Linear(512, cfg.num_classes)
|
749 |
+
|
750 |
+
|
751 |
+
def IT_loss(self, image_features, text_features):
|
752 |
+
# b, 1024 / b, 1024
|
753 |
+
batch = image_features.shape[0]
|
754 |
+
# # normalized features
|
755 |
+
image_features = image_features / image_features.norm(dim=-1,
|
756 |
+
keepdim=True)
|
757 |
+
text_features = text_features / text_features.norm(dim=-1,
|
758 |
+
keepdim=True)
|
759 |
+
|
760 |
+
# cosine similarity as logits
|
761 |
+
logit_scale = self.logit_scale.exp()
|
762 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
763 |
+
logits_per_text = logits_per_image.t()
|
764 |
+
|
765 |
+
# shape = [global_batch_size, global_batch_size]
|
766 |
+
contrastive_labels = torch.arange(batch).to(logits_per_image.device)
|
767 |
+
contrastive_loss = (self.ce(logits_per_image, contrastive_labels) + self.ce(logits_per_text, contrastive_labels)) * 0.5
|
768 |
+
|
769 |
+
|
770 |
+
return contrastive_loss
|
771 |
+
|
772 |
+
def forward(self, img, txt, stage):
|
773 |
+
|
774 |
+
if stage == '1st':
|
775 |
+
'''
|
776 |
+
img: b, 3, h, w
|
777 |
+
word: b, words
|
778 |
+
word_mask: b, words
|
779 |
+
mask: b, 1, h, w
|
780 |
+
stage: 1st or 2nd stage
|
781 |
+
'''
|
782 |
+
# padding mask used in decoder
|
783 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
784 |
+
|
785 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
786 |
+
# word: b, length, 512
|
787 |
+
# text: b, 1024
|
788 |
+
# image: b, 1024
|
789 |
+
vis, image = self.backbone.encode_image(img)
|
790 |
+
|
791 |
+
word, text = self.backbone.encode_text(txt)
|
792 |
+
|
793 |
+
x = self.ADP(image)
|
794 |
+
|
795 |
+
x = self.ratio * x + (1-self.ratio) * image
|
796 |
+
|
797 |
+
# b, 1024
|
798 |
+
# fq_t = self.FPN(vis, x)
|
799 |
+
#
|
800 |
+
# fv_t = self.gap(fq_t)
|
801 |
+
|
802 |
+
loss1 = self.IT_loss(x, text)
|
803 |
+
|
804 |
+
loss = loss1
|
805 |
+
|
806 |
+
ft = text
|
807 |
+
fi = x
|
808 |
+
fv = None
|
809 |
+
elif stage == '2nd':
|
810 |
+
'''
|
811 |
+
img: b, 3, h, w
|
812 |
+
word: b, words
|
813 |
+
word_mask: b, words
|
814 |
+
mask: b, 1, h, w
|
815 |
+
stage: 1st or 2nd stage
|
816 |
+
'''
|
817 |
+
# padding mask used in decoder
|
818 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
819 |
+
|
820 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
821 |
+
# word: b, length, 512
|
822 |
+
# text: b, 1024
|
823 |
+
# image: b, 1024
|
824 |
+
vis, image = self.backbone.encode_image(img)
|
825 |
+
|
826 |
+
word, text = self.backbone.encode_text(txt)
|
827 |
+
|
828 |
+
x = self.ADP(image)
|
829 |
+
|
830 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
831 |
+
|
832 |
+
# x_t = self.trans(x)
|
833 |
+
# fq = self.FPN(vis, x_t)
|
834 |
+
fq_t = self.FPN(vis, x)
|
835 |
+
|
836 |
+
fv_t = self.gap(fq_t)
|
837 |
+
|
838 |
+
# b, 1024
|
839 |
+
|
840 |
+
loss2 = self.IT_loss(fv_t, text)
|
841 |
+
|
842 |
+
loss = (loss2)
|
843 |
+
fv = fv_t
|
844 |
+
ft = text
|
845 |
+
fi = x
|
846 |
+
elif stage == '3rd':
|
847 |
+
'''
|
848 |
+
img: b, 3, h, w
|
849 |
+
word: b, words
|
850 |
+
word_mask: b, words
|
851 |
+
mask: b, 1, h, w
|
852 |
+
stage: 1st or 2nd stage
|
853 |
+
'''
|
854 |
+
# padding mask used in decoder
|
855 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
856 |
+
|
857 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
858 |
+
# word: b, length, 512
|
859 |
+
# text: b, 1024
|
860 |
+
# image: b, 1024
|
861 |
+
vis, image = self.backbone.encode_image(img)
|
862 |
+
|
863 |
+
word, text = self.backbone.encode_text(txt)
|
864 |
+
|
865 |
+
x = self.ADP(text)
|
866 |
+
ratio = 0.2
|
867 |
+
x = ratio * x + (1 - ratio) * text
|
868 |
+
|
869 |
+
# x_t = self.trans(x)
|
870 |
+
# fq = self.FPN(vis, x_t)
|
871 |
+
|
872 |
+
# b, 1024
|
873 |
+
loss1 = self.IT_loss(image, x)
|
874 |
+
|
875 |
+
|
876 |
+
loss = loss1
|
877 |
+
fv = None
|
878 |
+
ft = x
|
879 |
+
fi = image
|
880 |
+
elif stage == '4th':
|
881 |
+
'''
|
882 |
+
img: b, 3, h, w
|
883 |
+
word: b, words
|
884 |
+
word_mask: b, words
|
885 |
+
mask: b, 1, h, w
|
886 |
+
stage: 1st or 2nd stage
|
887 |
+
'''
|
888 |
+
# padding mask used in decoder
|
889 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
890 |
+
|
891 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
892 |
+
# word: b, length, 512
|
893 |
+
# text: b, 1024
|
894 |
+
# image: b, 1024
|
895 |
+
vis, image = self.backbone.encode_image(img)
|
896 |
+
word, text = self.backbone.encode_text(txt)
|
897 |
+
# x = self.ADP(image)
|
898 |
+
# ratio = 0.2
|
899 |
+
# x = ratio * x + (1 - ratio) * text
|
900 |
+
fq_t = self.FPN(vis, image)
|
901 |
+
|
902 |
+
fv_t = self.gap(fq_t)
|
903 |
+
ratio_1 = 0.2
|
904 |
+
# b, 1024
|
905 |
+
loss2 = self.IT_loss(fv_t, text)
|
906 |
+
|
907 |
+
loss = loss2
|
908 |
+
fv = fv_t
|
909 |
+
fi = None
|
910 |
+
ft = text
|
911 |
+
elif stage == '5th':
|
912 |
+
'''
|
913 |
+
img: b, 3, h, w
|
914 |
+
word: b, words
|
915 |
+
word_mask: b, words
|
916 |
+
mask: b, 1, h, w
|
917 |
+
stage: 1st or 2nd stage
|
918 |
+
'''
|
919 |
+
# padding mask used in decoder
|
920 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
921 |
+
|
922 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
923 |
+
# word: b, length, 512
|
924 |
+
# text: b, 1024
|
925 |
+
# image: b, 1024
|
926 |
+
vis, image = self.backbone.encode_image(img)
|
927 |
+
word, text = self.backbone.encode_text(txt)
|
928 |
+
x = self.ADP(image)
|
929 |
+
ratio = 0.2
|
930 |
+
x = ratio * x + (1 - ratio) * image
|
931 |
+
|
932 |
+
y = self.ADP_t(text)
|
933 |
+
ratio_1 = 0.2
|
934 |
+
y = ratio * y + (1 - ratio_1) * text
|
935 |
+
|
936 |
+
fq_t = self.FPN(vis, image)
|
937 |
+
|
938 |
+
fv_t = self.gap(fq_t)
|
939 |
+
|
940 |
+
|
941 |
+
# b, 1024
|
942 |
+
|
943 |
+
loss2 = self.IT_loss(fv_t, y)
|
944 |
+
|
945 |
+
loss = loss2
|
946 |
+
fv = fv_t
|
947 |
+
fi = x
|
948 |
+
ft = y
|
949 |
+
|
950 |
+
return loss, fv, fi, ft
|
951 |
+
|
952 |
+
class CISEN_lclip(nn.Module):
|
953 |
+
def __init__(self, cfg):
|
954 |
+
super().__init__()
|
955 |
+
# Vision & Text Encoder & Label Encoder
|
956 |
+
clip_model = torch.load(cfg.clip_pretrain,
|
957 |
+
map_location="cpu")
|
958 |
+
# print(type(clip_model))
|
959 |
+
backbone, image_resolution, vision_heads, embed_dim, vision_width, _ = build_lclip_model(clip_model, load_from_clip=True)
|
960 |
+
self.backbone = backbone.float()
|
961 |
+
cfg.input_size = image_resolution
|
962 |
+
cfg.heads = vision_heads // 32
|
963 |
+
cfg.emb_dim = vision_width
|
964 |
+
cfg.output_dim = embed_dim
|
965 |
+
# Multi-Modal FPN
|
966 |
+
self.FPN = FPN(cfg, in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
967 |
+
# Fined-grained Fusion
|
968 |
+
# self.FGFusion = TransformerDecoder(num_layers=cfg.num_layers,
|
969 |
+
# d_model=cfg.vis_dim,
|
970 |
+
# nhead=cfg.num_head,
|
971 |
+
# dim_ffn=cfg.dim_ffn,
|
972 |
+
# dropout=cfg.dropout,
|
973 |
+
# return_intermediate=cfg.intermediate)
|
974 |
+
|
975 |
+
# image-text transformer
|
976 |
+
# self.trans = nn.Linear(1024, 1024)
|
977 |
+
self.ADP = Adapter(cfg.output_dim, 4)
|
978 |
+
self.gap = GAP((1,1))
|
979 |
+
# parameter
|
980 |
+
self.ratio = cfg.ratio
|
981 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
982 |
+
self.share_temperature = True
|
983 |
+
self.margin = 1
|
984 |
+
self.eps = 1e-3
|
985 |
+
self.ce = nn.CrossEntropyLoss()
|
986 |
+
#1st stage
|
987 |
+
self.lamda1 = cfg.lamda1
|
988 |
+
self.lamda2 = cfg.lamda2
|
989 |
+
self.avg = nn.AdaptiveAvgPool2d((1,1))
|
990 |
+
# self.fc = nn.Linear(512, cfg.num_classes)
|
991 |
+
|
992 |
+
|
993 |
+
def IT_loss(self, image_features, text_features):
|
994 |
+
# b, 1024 / b, 1024
|
995 |
+
batch = image_features.shape[0]
|
996 |
+
# # normalized features
|
997 |
+
image_features = image_features / image_features.norm(dim=-1,
|
998 |
+
keepdim=True)
|
999 |
+
text_features = text_features / text_features.norm(dim=-1,
|
1000 |
+
keepdim=True)
|
1001 |
+
|
1002 |
+
# cosine similarity as logits
|
1003 |
+
logit_scale = self.logit_scale.exp()
|
1004 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
1005 |
+
logits_per_text = logits_per_image.t()
|
1006 |
+
|
1007 |
+
# shape = [global_batch_size, global_batch_size]
|
1008 |
+
contrastive_labels = torch.arange(batch).to(logits_per_image.device)
|
1009 |
+
contrastive_loss = (self.ce(logits_per_image, contrastive_labels) + self.ce(logits_per_text, contrastive_labels)) * 0.5
|
1010 |
+
|
1011 |
+
|
1012 |
+
return contrastive_loss
|
1013 |
+
|
1014 |
+
def forward(self, img, txt, stage):
|
1015 |
+
|
1016 |
+
if stage == '1st':
|
1017 |
+
'''
|
1018 |
+
img: b, 3, h, w
|
1019 |
+
word: b, words
|
1020 |
+
word_mask: b, words
|
1021 |
+
mask: b, 1, h, w
|
1022 |
+
stage: 1st or 2nd stage
|
1023 |
+
'''
|
1024 |
+
# padding mask used in decoder
|
1025 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
1026 |
+
|
1027 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
1028 |
+
# word: b, length, 512
|
1029 |
+
# text: b, 1024
|
1030 |
+
# image: b, 1024
|
1031 |
+
vis, image = self.backbone.encode_image(img)
|
1032 |
+
|
1033 |
+
text = self.backbone.encode_text(txt)
|
1034 |
+
|
1035 |
+
x = self.ADP(image)
|
1036 |
+
|
1037 |
+
x = self.ratio * x + (1-self.ratio) * image
|
1038 |
+
|
1039 |
+
# b, 1024
|
1040 |
+
# fq_t = self.FPN(vis, x)
|
1041 |
+
#
|
1042 |
+
# fv_t = self.gap(fq_t)
|
1043 |
+
|
1044 |
+
loss1 = self.IT_loss(x, text)
|
1045 |
+
|
1046 |
+
loss = loss1
|
1047 |
+
|
1048 |
+
ft = text
|
1049 |
+
fi = x
|
1050 |
+
fv = None
|
1051 |
+
elif stage == '2nd':
|
1052 |
+
'''
|
1053 |
+
img: b, 3, h, w
|
1054 |
+
word: b, words
|
1055 |
+
word_mask: b, words
|
1056 |
+
mask: b, 1, h, w
|
1057 |
+
stage: 1st or 2nd stage
|
1058 |
+
'''
|
1059 |
+
# padding mask used in decoder
|
1060 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
1061 |
+
|
1062 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
1063 |
+
# word: b, length, 512
|
1064 |
+
# text: b, 1024
|
1065 |
+
# image: b, 1024
|
1066 |
+
vis, image = self.backbone.encode_image(img)
|
1067 |
+
|
1068 |
+
word, text = self.backbone.encode_text(txt)
|
1069 |
+
|
1070 |
+
x = self.ADP(image)
|
1071 |
+
|
1072 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
1073 |
+
|
1074 |
+
# x_t = self.trans(x)
|
1075 |
+
# fq = self.FPN(vis, x_t)
|
1076 |
+
fq_t = self.FPN(vis, x)
|
1077 |
+
|
1078 |
+
fv_t = self.gap(fq_t)
|
1079 |
+
|
1080 |
+
# b, 1024
|
1081 |
+
|
1082 |
+
loss2 = self.IT_loss(fv_t, text)
|
1083 |
+
|
1084 |
+
loss = (loss2)
|
1085 |
+
fv = fv_t
|
1086 |
+
ft = text
|
1087 |
+
fi = x
|
1088 |
+
elif stage == '3rd':
|
1089 |
+
'''
|
1090 |
+
img: b, 3, h, w
|
1091 |
+
word: b, words
|
1092 |
+
word_mask: b, words
|
1093 |
+
mask: b, 1, h, w
|
1094 |
+
stage: 1st or 2nd stage
|
1095 |
+
'''
|
1096 |
+
# padding mask used in decoder
|
1097 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
1098 |
+
|
1099 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
1100 |
+
# word: b, length, 512
|
1101 |
+
# text: b, 1024
|
1102 |
+
# image: b, 1024
|
1103 |
+
vis, image = self.backbone.encode_image(img)
|
1104 |
+
|
1105 |
+
text = self.backbone.encode_text(txt)
|
1106 |
+
|
1107 |
+
x = self.ADP(text)
|
1108 |
+
ratio = 0.2
|
1109 |
+
x = ratio * x + (1 - ratio) * text
|
1110 |
+
|
1111 |
+
# x_t = self.trans(x)
|
1112 |
+
# fq = self.FPN(vis, x_t)
|
1113 |
+
|
1114 |
+
# b, 1024
|
1115 |
+
loss1 = self.IT_loss(image, x)
|
1116 |
+
|
1117 |
+
|
1118 |
+
loss = loss1
|
1119 |
+
fv = None
|
1120 |
+
ft = x
|
1121 |
+
fi = image
|
1122 |
+
elif stage == '4th':
|
1123 |
+
'''
|
1124 |
+
img: b, 3, h, w
|
1125 |
+
word: b, words
|
1126 |
+
word_mask: b, words
|
1127 |
+
mask: b, 1, h, w
|
1128 |
+
stage: 1st or 2nd stage
|
1129 |
+
'''
|
1130 |
+
# padding mask used in decoder
|
1131 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
1132 |
+
|
1133 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
1134 |
+
# word: b, length, 512
|
1135 |
+
# text: b, 1024
|
1136 |
+
# image: b, 1024
|
1137 |
+
vis, image = self.backbone.encode_image(img)
|
1138 |
+
word, text = self.backbone.encode_text(txt)
|
1139 |
+
# x = self.ADP(image)
|
1140 |
+
# ratio = 0.2
|
1141 |
+
# x = ratio * x + (1 - ratio) * text
|
1142 |
+
fq_t = self.FPN(vis, image)
|
1143 |
+
|
1144 |
+
fv_t = self.gap(fq_t)
|
1145 |
+
ratio_1 = 0.2
|
1146 |
+
# b, 1024
|
1147 |
+
loss2 = self.IT_loss(fv_t, text)
|
1148 |
+
|
1149 |
+
loss = loss2
|
1150 |
+
fv = fv_t
|
1151 |
+
fi = None
|
1152 |
+
ft = text
|
1153 |
+
elif stage == '5th':
|
1154 |
+
'''
|
1155 |
+
img: b, 3, h, w
|
1156 |
+
word: b, words
|
1157 |
+
word_mask: b, words
|
1158 |
+
mask: b, 1, h, w
|
1159 |
+
stage: 1st or 2nd stage
|
1160 |
+
'''
|
1161 |
+
# padding mask used in decoder
|
1162 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
1163 |
+
|
1164 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
1165 |
+
# word: b, length, 512
|
1166 |
+
# text: b, 1024
|
1167 |
+
# image: b, 1024
|
1168 |
+
vis, image = self.backbone.encode_image(img)
|
1169 |
+
word, text = self.backbone.encode_text(txt)
|
1170 |
+
x = self.ADP(image)
|
1171 |
+
ratio = 0.2
|
1172 |
+
x = ratio * x + (1 - ratio) * image
|
1173 |
+
|
1174 |
+
y = self.ADP_t(text)
|
1175 |
+
ratio_1 = 0.2
|
1176 |
+
y = ratio * y + (1 - ratio_1) * text
|
1177 |
+
|
1178 |
+
fq_t = self.FPN(vis, image)
|
1179 |
+
|
1180 |
+
fv_t = self.gap(fq_t)
|
1181 |
+
|
1182 |
+
|
1183 |
+
# b, 1024
|
1184 |
+
|
1185 |
+
loss2 = self.IT_loss(fv_t, y)
|
1186 |
+
|
1187 |
+
loss = loss2
|
1188 |
+
fv = fv_t
|
1189 |
+
fi = x
|
1190 |
+
ft = y
|
1191 |
+
|
1192 |
+
return loss, fv, fi, ft
|
1193 |
+
|
1194 |
+
class GeoRSCLIP(nn.Module):
|
1195 |
+
def __init__(self, cfg):
|
1196 |
+
super().__init__()
|
1197 |
+
# Vision & Text Encoder & Label Encoder
|
1198 |
+
clip_model = torch.load(cfg.clip_pretrain,
|
1199 |
+
map_location="cpu")
|
1200 |
+
|
1201 |
+
backbone, image_resolution, vision_heads, embed_dim, vision_width, patch_size = build_model(clip_model, cfg.word_len)
|
1202 |
+
self.backbone = backbone.float()
|
1203 |
+
|
1204 |
+
def forward(self, img, txt, stage):
|
1205 |
+
|
1206 |
+
|
1207 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
1208 |
+
|
1209 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
1210 |
+
# word: b, length, 512
|
1211 |
+
# text: b, 1024
|
1212 |
+
# image: b, 1024
|
1213 |
+
vis, image = self.backbone.encode_image(img)
|
1214 |
+
|
1215 |
+
word, text = self.backbone.encode_text(txt)
|
1216 |
+
|
1217 |
+
loss = None
|
1218 |
+
|
1219 |
+
ft = text
|
1220 |
+
fi = image
|
1221 |
+
fv = None
|
1222 |
+
return loss, fv, fi, ft
|
1223 |
+
|
1224 |
+
class CISEN(nn.Module):
|
1225 |
+
def __init__(self, cfg):
|
1226 |
+
super().__init__()
|
1227 |
+
# Vision & Text Encoder & Label Encoder
|
1228 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
1229 |
+
map_location="cpu").eval()
|
1230 |
+
|
1231 |
+
self.backbone = build_model(clip_model.state_dict(), cfg.word_len).float()
|
1232 |
+
# Multi-Modal FPN
|
1233 |
+
self.FPN = FPN(cfg, in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
1234 |
+
# Fined-grained Fusion
|
1235 |
+
self.FGFusion = TransformerDecoder(num_layers=cfg.num_layers,
|
1236 |
+
d_model=cfg.vis_dim,
|
1237 |
+
nhead=cfg.num_head,
|
1238 |
+
dim_ffn=cfg.dim_ffn,
|
1239 |
+
dropout=cfg.dropout,
|
1240 |
+
return_intermediate=cfg.intermediate)
|
1241 |
+
# adaptively aggretation
|
1242 |
+
self.ASFF = AdaptiveSpatialFeatureFusion(cfg, in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
1243 |
+
# text projector
|
1244 |
+
self.projT = Text_Projector(cfg, in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
1245 |
+
# image projector
|
1246 |
+
# self.projI = Image_Projector(in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
1247 |
+
# parameter
|
1248 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
1249 |
+
self.multi_label_logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
1250 |
+
self.share_temperature = True
|
1251 |
+
self.margin = 1
|
1252 |
+
self.eps = 1e-3
|
1253 |
+
self.ce = nn.CrossEntropyLoss()
|
1254 |
+
#1st stage
|
1255 |
+
self.lamda1 = cfg.lamda1
|
1256 |
+
self.lamda2 = cfg.lamda2
|
1257 |
+
self.beta1 = cfg.beta1
|
1258 |
+
self.beta2 = cfg.beta2
|
1259 |
+
self.avg = nn.AdaptiveAvgPool2d((1,1))
|
1260 |
+
# self.fc = nn.Linear(512, cfg.num_classes)
|
1261 |
+
#2nd stage
|
1262 |
+
self.pos_samples = cfg.pos_samples
|
1263 |
+
self.neg_samples = cfg.neg_samples
|
1264 |
+
|
1265 |
+
def IT_loss(self, image_features, text_features):
|
1266 |
+
# b, 1024 / b, 1024
|
1267 |
+
batch = image_features.shape[0]
|
1268 |
+
# # normalized features
|
1269 |
+
image_features = image_features / image_features.norm(dim=-1,
|
1270 |
+
keepdim=True)
|
1271 |
+
text_features = text_features / text_features.norm(dim=-1,
|
1272 |
+
keepdim=True)
|
1273 |
+
|
1274 |
+
# cosine similarity as logits
|
1275 |
+
logit_scale = self.logit_scale.exp()
|
1276 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
1277 |
+
logits_per_text = logits_per_image.t()
|
1278 |
+
|
1279 |
+
# shape = [global_batch_size, global_batch_size]
|
1280 |
+
contrastive_labels = torch.arange(batch).to(logits_per_image.device)
|
1281 |
+
contrastive_loss = (self.ce(logits_per_image, contrastive_labels) + self.ce(logits_per_text, contrastive_labels)) * 0.5
|
1282 |
+
|
1283 |
+
|
1284 |
+
return contrastive_loss
|
1285 |
+
|
1286 |
+
def IET_loss(self, image_features, text_features, pos_samples, beta):
|
1287 |
+
# b, 1024 / b, 1024
|
1288 |
+
# # normalized features
|
1289 |
+
image_features = [image_feature / image_feature.norm(dim=-1,
|
1290 |
+
keepdim=True) for image_feature in image_features]
|
1291 |
+
text_features = text_features / text_features.norm(dim=-1,
|
1292 |
+
keepdim=True)
|
1293 |
+
|
1294 |
+
# cosine similarity as logits
|
1295 |
+
logit_scale = self.logit_scale.exp()
|
1296 |
+
|
1297 |
+
# logits_per_image = [logit_scale * image_feature @ text_features.t() for image_feature in image_features]
|
1298 |
+
logits_per_image = [logit_scale * torch.sum(torch.mul(image_feature, text_features),1) for image_feature in image_features]
|
1299 |
+
logits_per_image = torch.stack(logits_per_image).t()
|
1300 |
+
b = logits_per_image.shape[0]
|
1301 |
+
loss1 = torch.norm(text_features - image_features[0])
|
1302 |
+
positive_tagsT = torch.zeros(b,len(image_features)).to(text_features.device)
|
1303 |
+
negative_tagsT = torch.zeros(b,len(image_features)).to(text_features.device)
|
1304 |
+
positive_tagsT[:, 0 : pos_samples + 1] = 1
|
1305 |
+
negative_tagsT[:, pos_samples + 1 : -1] = 1
|
1306 |
+
|
1307 |
+
maskT = positive_tagsT.unsqueeze(1) * negative_tagsT.unsqueeze(-1)
|
1308 |
+
pos_score_matT = logits_per_image * positive_tagsT
|
1309 |
+
neg_score_matT = logits_per_image * negative_tagsT
|
1310 |
+
IW_pos3T = pos_score_matT.unsqueeze(1)
|
1311 |
+
IW_neg3T = neg_score_matT.unsqueeze(-1)
|
1312 |
+
OT = 1 + IW_neg3T - IW_pos3T
|
1313 |
+
O_maskT = maskT * OT
|
1314 |
+
diffT = torch.clamp(O_maskT, 0)
|
1315 |
+
violationT = torch.sign(diffT).sum(1).sum(1)
|
1316 |
+
diffT = diffT.sum(1).sum(1)
|
1317 |
+
lossT = torch.mean(diffT / (violationT + self.eps))
|
1318 |
+
loss = beta * loss1 + lossT
|
1319 |
+
|
1320 |
+
return loss
|
1321 |
+
|
1322 |
+
def test_IET_loss(self, image_features, text_features, pos_samples, beta1, beta2):
|
1323 |
+
# text_features: enhanced_features
|
1324 |
+
# b, 1024 / b, 1024
|
1325 |
+
# # normalized features
|
1326 |
+
image_features = image_features / image_features.norm(dim=-1,
|
1327 |
+
keepdim=True)
|
1328 |
+
text_features = text_features / text_features.norm(dim=-1,
|
1329 |
+
keepdim=True)
|
1330 |
+
image_features = image_features.unsqueeze(1)
|
1331 |
+
# cosine similarity as logits
|
1332 |
+
logit_scale = self.logit_scale.exp()
|
1333 |
+
# image_features = image_features.expand(-1, text_features.shape[1], -1)
|
1334 |
+
logits_per_image = logit_scale * torch.matmul(image_features, text_features.transpose(1, 2))
|
1335 |
+
logits_per_image = logits_per_image.squeeze(1)
|
1336 |
+
# logits_per_image = logit_scale * image_features @ text_features.t()
|
1337 |
+
# logits_per_image = [logit_scale * image_feature @ text_features.t() for image_feature in image_features]
|
1338 |
+
|
1339 |
+
b = logits_per_image.shape[0]
|
1340 |
+
|
1341 |
+
# loss1 = torch.norm(text_features[:, 0, :] - image_features.squeeze(1))
|
1342 |
+
|
1343 |
+
positive_tagsT = torch.zeros(b, text_features.shape[1]).to(text_features.device)
|
1344 |
+
negative_tagsT = torch.zeros(b, text_features.shape[1]).to(text_features.device)
|
1345 |
+
positive_tagsT[:, 0 : pos_samples + 1] = 1
|
1346 |
+
negative_tagsT[:, pos_samples + 1 : -1] = 1
|
1347 |
+
|
1348 |
+
maskT = positive_tagsT.unsqueeze(1) * negative_tagsT.unsqueeze(-1)
|
1349 |
+
pos_score_matT = logits_per_image * positive_tagsT
|
1350 |
+
neg_score_matT = logits_per_image * negative_tagsT
|
1351 |
+
IW_pos3T = pos_score_matT.unsqueeze(1)
|
1352 |
+
IW_neg3T = neg_score_matT.unsqueeze(-1)
|
1353 |
+
OT = 1 + IW_neg3T - IW_pos3T
|
1354 |
+
O_maskT = maskT * OT
|
1355 |
+
diffT = torch.clamp(O_maskT, 0)
|
1356 |
+
violationT = torch.sign(diffT).sum(1).sum(1)
|
1357 |
+
diffT = diffT.sum(1).sum(1)
|
1358 |
+
lossT = torch.mean(diffT / (violationT + self.eps))
|
1359 |
+
# loss = beta1 * loss1 + beta2 * lossT
|
1360 |
+
loss = lossT
|
1361 |
+
return loss
|
1362 |
+
|
1363 |
+
def test_IT_loss(self, image_features, text_features):
|
1364 |
+
# b, 1024 / b, 1024
|
1365 |
+
batch = image_features.shape[0]
|
1366 |
+
# # normalized features
|
1367 |
+
image_features = image_features / image_features.norm(dim=-1,
|
1368 |
+
keepdim=True)
|
1369 |
+
text_features = text_features / text_features.norm(dim=-1,
|
1370 |
+
keepdim=True)
|
1371 |
+
image_features = image_features.unsqueeze(1)
|
1372 |
+
# cosine similarity as logits
|
1373 |
+
logit_scale = self.logit_scale.exp()
|
1374 |
+
logits_per_image = logit_scale * torch.matmul(image_features, text_features.transpose(1, 2))
|
1375 |
+
logits_per_image = logits_per_image.squeeze(1)
|
1376 |
+
|
1377 |
+
# shape = [global_batch_size, global_batch_size]
|
1378 |
+
contrastive_labels = torch.arange(batch).to(logits_per_image.device)
|
1379 |
+
contrastive_loss = self.ce(logits_per_image, contrastive_labels)
|
1380 |
+
|
1381 |
+
|
1382 |
+
return contrastive_loss
|
1383 |
+
|
1384 |
+
def test_forward(self, img, txt):
|
1385 |
+
'''
|
1386 |
+
img: b, 3, h, w
|
1387 |
+
word: b, words
|
1388 |
+
word_mask: b, words
|
1389 |
+
mask: b, 1, h, w
|
1390 |
+
stage: 1st or 2nd stage
|
1391 |
+
'''
|
1392 |
+
|
1393 |
+
# padding mask used in decoder
|
1394 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
1395 |
+
|
1396 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
1397 |
+
# word: b, length, 512
|
1398 |
+
# state: b, 1024
|
1399 |
+
# image: b, 512
|
1400 |
+
vis, image = self.backbone.encode_image(img)
|
1401 |
+
|
1402 |
+
word, text = self.backbone.encode_text(txt)
|
1403 |
+
|
1404 |
+
fq = self.FPN(vis, text)
|
1405 |
+
|
1406 |
+
b, c, h, w = fq.size()
|
1407 |
+
# b, 512, 14, 14
|
1408 |
+
ff = self.FGFusion(fq, word, pad_mask)
|
1409 |
+
ff = ff.reshape(b, c, h, w)
|
1410 |
+
|
1411 |
+
f2 = self.avg(ff)
|
1412 |
+
fi = image.unsqueeze(-1).unsqueeze(-1)
|
1413 |
+
fv = self.ASFF(fi, f2)
|
1414 |
+
fi = fi.squeeze(-1).squeeze(-1)
|
1415 |
+
# b, 1024
|
1416 |
+
ft = self.projT(text)
|
1417 |
+
loss1 = self.IT_loss(fi, ft)
|
1418 |
+
loss2 = self.IT_loss(fv, ft)
|
1419 |
+
loss = self.lamda1 * loss1 + self.lamda2 * loss2
|
1420 |
+
|
1421 |
+
return loss, fv, ft, fi
|
1422 |
+
|
1423 |
+
def forward(self, img, txt, stage):
|
1424 |
+
|
1425 |
+
if stage == '1st':
|
1426 |
+
'''
|
1427 |
+
img: b, 3, h, w
|
1428 |
+
word: b, words
|
1429 |
+
word_mask: b, words
|
1430 |
+
mask: b, 1, h, w
|
1431 |
+
stage: 1st or 2nd stage
|
1432 |
+
'''
|
1433 |
+
# padding mask used in decoder
|
1434 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
1435 |
+
|
1436 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
1437 |
+
# word: b, length, 512
|
1438 |
+
# state: b, 1024
|
1439 |
+
# image: b, 512
|
1440 |
+
vis, image = self.backbone.encode_image(img)
|
1441 |
+
|
1442 |
+
word, text = self.backbone.encode_text(txt)
|
1443 |
+
|
1444 |
+
fq = self.FPN(vis, text)
|
1445 |
+
|
1446 |
+
b, c, h, w = fq.size()
|
1447 |
+
# b, 512, 14, 14
|
1448 |
+
ff = self.FGFusion(fq, word, pad_mask)
|
1449 |
+
ff = ff.reshape(b, c, h, w)
|
1450 |
+
|
1451 |
+
f2 = self.avg(ff)
|
1452 |
+
fi = image.unsqueeze(-1).unsqueeze(-1)
|
1453 |
+
fv = self.ASFF(fi, f2)
|
1454 |
+
fi = fi.squeeze(-1).squeeze(-1)
|
1455 |
+
# b, 1024
|
1456 |
+
ft = self.projT(text)
|
1457 |
+
loss1 = self.IT_loss(fi, ft)
|
1458 |
+
loss2 = self.IT_loss(fv, ft)
|
1459 |
+
loss = self.lamda1 * loss1 + self.lamda2 * loss2
|
1460 |
+
|
1461 |
+
elif stage == '2nd':
|
1462 |
+
"""
|
1463 |
+
txt: b, num, words
|
1464 |
+
img: b, 3, h, w
|
1465 |
+
"""
|
1466 |
+
|
1467 |
+
# txt = b * num, word
|
1468 |
+
b, num, l = txt.shape[0], txt.shape[1], txt.shape[2]
|
1469 |
+
txt = txt.view(-1, txt.size(-1))
|
1470 |
+
|
1471 |
+
# padding mask used in decoder
|
1472 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
1473 |
+
|
1474 |
+
b = img.shape[0]
|
1475 |
+
vis, image = self.backbone.encode_image(img)
|
1476 |
+
word, text = self.backbone.encode_text(txt)
|
1477 |
+
|
1478 |
+
fq = self.FPN(vis, text)
|
1479 |
+
# b, 512, 14, 14 (C4)
|
1480 |
+
|
1481 |
+
b, c, h, w = fq.size()
|
1482 |
+
# b, 512, 14, 14
|
1483 |
+
ff = self.FGFusion(fq, word, pad_mask)
|
1484 |
+
ff = ff.reshape(b, c, h, w)
|
1485 |
+
|
1486 |
+
f2 = self.avg(ff)
|
1487 |
+
fi = image.unsqueeze(-1).unsqueeze(-1)
|
1488 |
+
fi_ = fi.repeat(int(f2.shape[0] / fi.shape[0]), 1, 1, 1)
|
1489 |
+
|
1490 |
+
fv = self.ASFF(fi_, f2)
|
1491 |
+
fi = fi.squeeze(-1).squeeze(-1)
|
1492 |
+
# fi_ = fi_.squeeze(-1).squeeze(-1)
|
1493 |
+
# b, 1024
|
1494 |
+
ft = text.view(img.shape[0], int(text.shape[0] / img.shape[0]), -1)[:, 0, :]
|
1495 |
+
fv = fv.view(ft.shape[0], int(text.shape[0] / ft.shape[0]), fv.shape[1])
|
1496 |
+
loss = self.test_IET_loss(fi, fv, self.pos_samples, self.beta1, self.beta2)
|
1497 |
+
|
1498 |
+
|
1499 |
+
elif stage == 'test':
|
1500 |
+
"""
|
1501 |
+
txt: b, num, words
|
1502 |
+
img: b, 3, h, w
|
1503 |
+
"""
|
1504 |
+
txt = txt.permute(1, 0, 2)
|
1505 |
+
|
1506 |
+
# txt = b * num, word
|
1507 |
+
# txt = txt.view(-1, txt.size(-1))
|
1508 |
+
|
1509 |
+
# padding mask used in decoder
|
1510 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
1511 |
+
|
1512 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
1513 |
+
# word: b, length, 512
|
1514 |
+
# state: b, 1024
|
1515 |
+
# image: b, 512
|
1516 |
+
b = img.shape[0]
|
1517 |
+
words = []
|
1518 |
+
texts = []
|
1519 |
+
vis, image = self.backbone.encode_image(img)
|
1520 |
+
for i in range(txt.shape[0]):
|
1521 |
+
word, text = self.backbone.encode_text(txt[i])
|
1522 |
+
words.append(word)
|
1523 |
+
texts.append(text)
|
1524 |
+
|
1525 |
+
fvn = []
|
1526 |
+
# b, 512, 14, 14 (C4)
|
1527 |
+
for i in range(txt.shape[0]):
|
1528 |
+
fq = self.FPN(vis, texts[i])
|
1529 |
+
|
1530 |
+
b, c, h, w = fq.size()
|
1531 |
+
# b, 512, 14, 14
|
1532 |
+
ff = self.FGFusion(fq, words[i], pad_mask[i, :, :])
|
1533 |
+
ff = ff.reshape(b, c, h, w)
|
1534 |
+
|
1535 |
+
f2 = self.avg(ff)
|
1536 |
+
fi = image.unsqueeze(-1).unsqueeze(-1)
|
1537 |
+
fv = self.ASFF(fi, f2)
|
1538 |
+
fi = fi.squeeze(-1).squeeze(-1)
|
1539 |
+
fvn.append(fv)
|
1540 |
+
|
1541 |
+
# b, 1024
|
1542 |
+
ft = self.projT(texts[0])
|
1543 |
+
loss = self.IET_loss(fvn, ft, self.pos_samples, self.beta)
|
1544 |
+
fv = fvn
|
1545 |
+
|
1546 |
+
|
1547 |
+
else:
|
1548 |
+
print('stage should be either 1st or 2nd or test')
|
1549 |
+
|
1550 |
+
|
1551 |
+
|
1552 |
+
# labels = torch.ones(image.shape[0], image.shape[0]).to(image.device)
|
1553 |
+
# labels[:,-1] = 0
|
1554 |
+
# labels[3, :] = 0
|
1555 |
+
|
1556 |
+
|
1557 |
+
# out = self.avg(fq)
|
1558 |
+
# out = out.squeeze(-1).squeeze(-1)
|
1559 |
+
# out = self.fc(out)
|
1560 |
+
|
1561 |
+
return loss, fv, fi, ft
|
1562 |
+
|
1563 |
+
|
1564 |
+
|
1565 |
+
class CRIS(nn.Module):
|
1566 |
+
def __init__(self, cfg):
|
1567 |
+
super().__init__()
|
1568 |
+
# Vision & Text Encoder & Label Encoder
|
1569 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
1570 |
+
map_location="cpu").eval()
|
1571 |
+
|
1572 |
+
self.backbone, _, _, _, _ = build_model(clip_model.state_dict(), cfg.word_len)
|
1573 |
+
self.backbone = self.backbone.float()
|
1574 |
+
self.Label_encoder = build_promptlearner(clip_model.state_dict()).float()
|
1575 |
+
self.Label_encoder.init_label_emb(cfg.label_path)
|
1576 |
+
|
1577 |
+
# Multi-Modal FPN
|
1578 |
+
self.FPN = FPN(in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
1579 |
+
# Fined-grained Fusion
|
1580 |
+
self.FGFusion = TransformerDecoder(num_layers=cfg.num_layers,
|
1581 |
+
d_model=cfg.vis_dim,
|
1582 |
+
nhead=cfg.num_head,
|
1583 |
+
dim_ffn=cfg.dim_ffn,
|
1584 |
+
dropout=cfg.dropout,
|
1585 |
+
return_intermediate=cfg.intermediate)
|
1586 |
+
# adaptively aggretation
|
1587 |
+
self.ASFF = AdaptiveSpatialFeatureFusion(in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
1588 |
+
# text projector
|
1589 |
+
self.projT = Text_Projector(in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
1590 |
+
# parameter
|
1591 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
1592 |
+
self.multi_label_logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
1593 |
+
self.share_temperature = True
|
1594 |
+
self.margin = 1
|
1595 |
+
self.eps = 1e-3
|
1596 |
+
self.ce = nn.CrossEntropyLoss()
|
1597 |
+
self.avg = nn.AdaptiveAvgPool2d((1,1))
|
1598 |
+
self.fc = nn.Linear(512, cfg.num_classes)
|
1599 |
+
|
1600 |
+
|
1601 |
+
|
1602 |
+
def IT_loss(self, image_features, text_features):
|
1603 |
+
# b, 1024 / b, 1024
|
1604 |
+
batch = image_features.shape[0]
|
1605 |
+
# # normalized features
|
1606 |
+
image_features = image_features / image_features.norm(dim=-1,
|
1607 |
+
keepdim=True)
|
1608 |
+
text_features = text_features / text_features.norm(dim=-1,
|
1609 |
+
keepdim=True)
|
1610 |
+
|
1611 |
+
# cosine similarity as logits
|
1612 |
+
logit_scale = self.logit_scale.exp()
|
1613 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
1614 |
+
logits_per_text = logits_per_image.t()
|
1615 |
+
|
1616 |
+
# shape = [global_batch_size, global_batch_size]
|
1617 |
+
contrastive_labels = torch.arange(batch).to(logits_per_image.device)
|
1618 |
+
contrastive_loss = (self.ce(logits_per_image, contrastive_labels) + self.ce(logits_per_text, contrastive_labels)) * 0.5
|
1619 |
+
|
1620 |
+
|
1621 |
+
return contrastive_loss
|
1622 |
+
|
1623 |
+
def IL_loss(self, image_features, label_features, labels):
|
1624 |
+
|
1625 |
+
# b, 1024 / K, 1024/ b, K
|
1626 |
+
positive_tagsT = torch.clamp(labels,0.,1.)
|
1627 |
+
negative_tagsT = torch.clamp(-labels,0.,1.)
|
1628 |
+
maskT = positive_tagsT.unsqueeze(1) * negative_tagsT.unsqueeze(-1)
|
1629 |
+
|
1630 |
+
# normalized features
|
1631 |
+
|
1632 |
+
image_features = image_features / image_features.norm(dim=-1,
|
1633 |
+
keepdim=True)
|
1634 |
+
label_features = label_features / label_features.norm(dim=-1,
|
1635 |
+
keepdim=True)
|
1636 |
+
# cosine similarity as logits
|
1637 |
+
logit_scale = self.multi_label_logit_scale.exp()
|
1638 |
+
logits_per_image = logit_scale * image_features @ label_features.t()
|
1639 |
+
# logits_per_label = logit_scale * label_features @ image_features.t()
|
1640 |
+
pos_score_matT = logits_per_image * positive_tagsT
|
1641 |
+
neg_score_matT = logits_per_image * negative_tagsT
|
1642 |
+
IW_pos3T = pos_score_matT.unsqueeze(1)
|
1643 |
+
IW_neg3T = neg_score_matT.unsqueeze(-1)
|
1644 |
+
OT = self.margin + IW_neg3T - IW_pos3T
|
1645 |
+
O_maskT = maskT * OT
|
1646 |
+
diffT = torch.clamp(O_maskT, 0)
|
1647 |
+
violationT = torch.sign(diffT).sum(1).sum(1)
|
1648 |
+
diffT = diffT.sum(1).sum(1)
|
1649 |
+
lossT = torch.mean(diffT / (violationT + self.eps))
|
1650 |
+
|
1651 |
+
|
1652 |
+
|
1653 |
+
|
1654 |
+
return lossT
|
1655 |
+
|
1656 |
+
def margin_loss(self, image_features, label_features, labels):
|
1657 |
+
|
1658 |
+
# b, 1024 / K, 1024/ b, K
|
1659 |
+
|
1660 |
+
|
1661 |
+
# normalized features
|
1662 |
+
|
1663 |
+
image_features = image_features / image_features.norm(dim=-1,
|
1664 |
+
keepdim=True)
|
1665 |
+
label_features = label_features / label_features.norm(dim=-1,
|
1666 |
+
keepdim=True)
|
1667 |
+
# cosine similarity as logits
|
1668 |
+
logit_scale = self.multi_label_logit_scale.exp()
|
1669 |
+
logits_per_image = logit_scale * image_features @ label_features.t()
|
1670 |
+
# logits_per_label = logit_scale * label_features @ image_features.t()
|
1671 |
+
|
1672 |
+
image_label_positive_pairs = logits_per_image * labels
|
1673 |
+
image_label_mean_positive = image_label_positive_pairs.sum() / labels.sum()
|
1674 |
+
image_label_negative_pairs = logits_per_image * (1 - labels)
|
1675 |
+
image_label_mean_negative = image_label_negative_pairs.sum() / (logits_per_image.numel() - labels.sum() + self.eps)
|
1676 |
+
|
1677 |
+
contrastive_loss = torch.relu(self.margin - image_label_mean_positive + image_label_mean_negative)
|
1678 |
+
|
1679 |
+
return contrastive_loss
|
1680 |
+
|
1681 |
+
def forward(self, img, txt, target=None):
|
1682 |
+
'''
|
1683 |
+
img: b, 3, h, w
|
1684 |
+
word: b, words
|
1685 |
+
word_mask: b, words
|
1686 |
+
mask: b, 1, h, w
|
1687 |
+
'''
|
1688 |
+
|
1689 |
+
# padding mask used in decoder
|
1690 |
+
|
1691 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
1692 |
+
|
1693 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
1694 |
+
# word: b, length, 512
|
1695 |
+
# state: b, 1024
|
1696 |
+
# image: b, 512
|
1697 |
+
vis, image = self.backbone.encode_image(img)
|
1698 |
+
word, text = self.backbone.encode_text(txt)
|
1699 |
+
|
1700 |
+
|
1701 |
+
fl = self.Label_encoder(image.device)
|
1702 |
+
# b, 512, 14, 14 (C4)
|
1703 |
+
fq = self.FPN(vis, text)
|
1704 |
+
b, c, h, w = fq.size()
|
1705 |
+
# b, 512, 14, 14
|
1706 |
+
ff = self.FGFusion(fq, word, pad_mask)
|
1707 |
+
# b, 512, 196
|
1708 |
+
ff = ff.reshape(b, c, h, w)
|
1709 |
+
f2 = self.avg(ff)
|
1710 |
+
# b, 1024
|
1711 |
+
f1 = image.unsqueeze(-1).unsqueeze(-1)
|
1712 |
+
fv = self.ASFF(f1, f2)
|
1713 |
+
|
1714 |
+
# b, 1024
|
1715 |
+
ft = self.projT(text)
|
1716 |
+
# labels = torch.ones(image.shape[0], image.shape[0]).to(image.device)
|
1717 |
+
# labels[:,-1] = 0
|
1718 |
+
# labels[3, :] = 0
|
1719 |
+
|
1720 |
+
loss1 = self.IT_loss(fv, ft)
|
1721 |
+
loss2 = self.IL_loss(fv, fl, target)
|
1722 |
+
loss = loss1 + loss2
|
1723 |
+
# out = self.avg(fq)
|
1724 |
+
# out = out.squeeze(-1).squeeze(-1)
|
1725 |
+
# out = self.fc(out)
|
1726 |
+
|
1727 |
+
return loss, fv, ft, fl
|
1728 |
+
|
1729 |
+
class zh_clip(nn.Module):
|
1730 |
+
def __init__(self, cfg):
|
1731 |
+
super().__init__()
|
1732 |
+
# Vision & Text Encoder
|
1733 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
1734 |
+
map_location="cpu").eval()
|
1735 |
+
self.backbone = build_modified_model(clip_model.state_dict(), cfg.word_len).float()
|
1736 |
+
|
1737 |
+
self.text_encoder = AutoModelForSequenceClassification.from_pretrained(cfg.chinese)
|
1738 |
+
self.text_lin = nn.Linear(512, 1024)
|
1739 |
+
|
1740 |
+
|
1741 |
+
# Multi-Modal FPN
|
1742 |
+
self.neck = ViTFPN(in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
1743 |
+
# Decoder
|
1744 |
+
|
1745 |
+
self.avg = nn.AdaptiveAvgPool2d((1,1))
|
1746 |
+
self.fc = nn.Linear(512, cfg.num_classes)
|
1747 |
+
def forward(self, img, word):
|
1748 |
+
'''
|
1749 |
+
img: b, 3, h, w
|
1750 |
+
word: b, words
|
1751 |
+
word_mask: b, words
|
1752 |
+
mask: b, 1, h, w
|
1753 |
+
'''
|
1754 |
+
# padding mask used in decoder
|
1755 |
+
|
1756 |
+
|
1757 |
+
# vis: v1 / v2 / b, 49, 1024/ b, 196, 512
|
1758 |
+
# state: b, 1024
|
1759 |
+
# feat: f1 / f2 / b, 1024, 7, 7/ b, 1024, 7, 7
|
1760 |
+
# cls: c1 / c2 / b, 1024/ b, 512
|
1761 |
+
vis, feat, cls = self.backbone.encode_image(img)
|
1762 |
+
state = self.text_encoder(word.squeeze(1)).logits
|
1763 |
+
state = self.text_lin(state)
|
1764 |
+
# b, 1024, 7, 7 (C5)
|
1765 |
+
fq = self.neck(feat, state)
|
1766 |
+
|
1767 |
+
out = self.avg(fq)
|
1768 |
+
out = out.squeeze(-1).squeeze(-1)
|
1769 |
+
out = self.fc(out)
|
1770 |
+
|
1771 |
+
return out
|
1772 |
+
|
1773 |
+
class poi_clip(nn.Module):
|
1774 |
+
def __init__(self, cfg):
|
1775 |
+
super().__init__()
|
1776 |
+
# Vision & Text Encoder
|
1777 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
1778 |
+
map_location="cpu").eval()
|
1779 |
+
self.backbone = build_modified_model(clip_model.state_dict(), cfg.word_len).float()
|
1780 |
+
|
1781 |
+
self.text_encoder = AutoModelForSequenceClassification.from_pretrained(cfg.chinese)
|
1782 |
+
self.text_lin = nn.Linear(512, 1024)
|
1783 |
+
|
1784 |
+
|
1785 |
+
# Multi-Modal FPN
|
1786 |
+
self.neck = ViTFPN(in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
1787 |
+
# Decoder
|
1788 |
+
|
1789 |
+
self.avg = nn.AdaptiveAvgPool2d((1,1))
|
1790 |
+
self.fc = nn.Linear(512, cfg.num_classes)
|
1791 |
+
def forward(self, img, word):
|
1792 |
+
'''
|
1793 |
+
img: b, 3, h, w
|
1794 |
+
word: b, words
|
1795 |
+
word_mask: b, words
|
1796 |
+
mask: b, 1, h, w
|
1797 |
+
'''
|
1798 |
+
# padding mask used in decoder
|
1799 |
+
|
1800 |
+
|
1801 |
+
# vis: v1 / v2 / b, 49, 1024/ b, 196, 512
|
1802 |
+
# state: b, 1024
|
1803 |
+
# feat: f1 / f2 / b, 1024, 7, 7/ b, 1024, 7, 7
|
1804 |
+
# cls: c1 / c2 / b, 1024/ b, 512
|
1805 |
+
vis, feat, cls = self.backbone.encode_image(img)
|
1806 |
+
state = self.text_encoder(word.squeeze(1)).logits
|
1807 |
+
state = self.text_lin(state)
|
1808 |
+
# b, 1024, 7, 7 (C5)
|
1809 |
+
fq = self.neck(feat, state)
|
1810 |
+
|
1811 |
+
out = self.avg(fq)
|
1812 |
+
out = out.squeeze(-1).squeeze(-1)
|
1813 |
+
out = self.fc(out)
|
1814 |
+
|
1815 |
+
return out
|
1816 |
+
|
1817 |
+
class Clip_hash_model(nn.Module):
|
1818 |
+
def __init__(self, cfg):
|
1819 |
+
super().__init__()
|
1820 |
+
|
1821 |
+
# Vision & Text Encoder
|
1822 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
1823 |
+
map_location="cpu").eval()
|
1824 |
+
self.backbone = build_model(clip_model.state_dict(), cfg.word_len).float()
|
1825 |
+
# Multi-Modal FPN
|
1826 |
+
self.neck = FPN(in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
1827 |
+
|
1828 |
+
# Decoder
|
1829 |
+
self.avg = nn.AdaptiveAvgPool2d((1, 1))
|
1830 |
+
|
1831 |
+
self.classifier = nn.Sequential(
|
1832 |
+
nn.Linear(cfg.fpn_out[1], cfg.hash_dim, bias=True),
|
1833 |
+
nn.Tanh(),
|
1834 |
+
)
|
1835 |
+
|
1836 |
+
self.classifier2 = nn.Sequential(
|
1837 |
+
nn.Linear(cfg.hash_dim, cfg.num_classes)
|
1838 |
+
)
|
1839 |
+
|
1840 |
+
# Hash Module
|
1841 |
+
self.image_module = nn.Sequential(
|
1842 |
+
nn.Linear(cfg.img_dim, cfg.hidden_dim, bias=True),
|
1843 |
+
nn.BatchNorm1d(cfg.hidden_dim),
|
1844 |
+
nn.ReLU(True),
|
1845 |
+
nn.Linear(cfg.hidden_dim, cfg.hash_dim, bias=True),
|
1846 |
+
nn.Tanh()
|
1847 |
+
)
|
1848 |
+
|
1849 |
+
self.text_module = nn.Sequential(
|
1850 |
+
nn.Linear(cfg.txt_dim, cfg.hidden_dim, bias=True),
|
1851 |
+
nn.BatchNorm1d(cfg.hidden_dim),
|
1852 |
+
nn.ReLU(True),
|
1853 |
+
nn.Linear(cfg.hidden_dim, cfg.hash_dim, bias=True),
|
1854 |
+
nn.Tanh()
|
1855 |
+
)
|
1856 |
+
def forward(self, img, word, mask=None):
|
1857 |
+
'''
|
1858 |
+
img: b, 3, h, w
|
1859 |
+
word: b, words
|
1860 |
+
word_mask: b, words
|
1861 |
+
'''
|
1862 |
+
pad_mask = torch.zeros_like(word).masked_fill_(word == 0, 1).bool()
|
1863 |
+
# vis: C3 / C4 / C5
|
1864 |
+
# word: b, length, 512
|
1865 |
+
# state: b, 1024
|
1866 |
+
vis, image = self.backbone.encode_image(img)
|
1867 |
+
word, state = self.backbone.encode_text(word)
|
1868 |
+
|
1869 |
+
# b, 512, 26, 26 (C4)
|
1870 |
+
fq = self.neck(vis, state)
|
1871 |
+
|
1872 |
+
# out_hash: b, code_length
|
1873 |
+
# res: b, classes
|
1874 |
+
out = self.avg(fq)
|
1875 |
+
out = out.squeeze(-1).squeeze(-1)
|
1876 |
+
out_hash = self.classifier(out)
|
1877 |
+
res = self.classifier2(out_hash)
|
1878 |
+
|
1879 |
+
# img_hash: b, code_length
|
1880 |
+
# txt_hash: b, code_length
|
1881 |
+
img_hash = self.image_module(image)
|
1882 |
+
txt_hash = self.text_module(state)
|
1883 |
+
|
1884 |
+
|
1885 |
+
|
1886 |
+
return img_hash, txt_hash, out_hash, res
|
1887 |
+
|
1888 |
+
class Clip_model(nn.Module):
|
1889 |
+
def __init__(self, cfg):
|
1890 |
+
super().__init__()
|
1891 |
+
|
1892 |
+
# Vision & Text Encoder
|
1893 |
+
clip_model = torch.jit.load(cfg.clip_pretrain,
|
1894 |
+
map_location="cpu").eval()
|
1895 |
+
|
1896 |
+
self.neck = FPN(in_channels=cfg.fpn_in, out_channels=cfg.fpn_out)
|
1897 |
+
self.avg = nn.AdaptiveAvgPool2d((1, 1))
|
1898 |
+
self.backbone = build_model(clip_model.state_dict(), cfg.word_len).float()
|
1899 |
+
|
1900 |
+
def forward(self, img, word, mask=None):
|
1901 |
+
'''
|
1902 |
+
img: b, 3, h, w
|
1903 |
+
word: b, words
|
1904 |
+
word_mask: b, words
|
1905 |
+
'''
|
1906 |
+
# vis: C3 / C4 / C5
|
1907 |
+
# word: b, length, 512
|
1908 |
+
# state: b, 1024
|
1909 |
+
pad_mask = torch.zeros_like(word).masked_fill_(word == 0, 1).bool()
|
1910 |
+
vis, image = self.backbone.encode_image(img)
|
1911 |
+
word, state = self.backbone.encode_text(word)
|
1912 |
+
f = self.neck(vis, state)
|
1913 |
+
out = self.avg(f)
|
1914 |
+
out = out.squeeze(-1).squeeze(-1)
|
1915 |
+
image_features = image / image.norm(dim=-1, keepdim=True)
|
1916 |
+
text_features = state / state.norm(dim=-1, keepdim=True)
|
1917 |
+
|
1918 |
+
# cosine similarity as logits
|
1919 |
+
logit_scale = self.backbone.logit_scale.exp()
|
1920 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
1921 |
+
logits_per_text = logits_per_image.t()
|
1922 |
+
|
1923 |
+
# shape = [global_batch_size, global_batch_size]
|
1924 |
+
return logits_per_image, logits_per_text
|
1925 |
+
|
1926 |
+
|
1927 |
+
class CISEN_rsvit_hug(nn.Module, PyTorchModelHubMixin):
|
1928 |
+
def __init__(self, embed_dim, image_resolution, vision_layers, vision_width,
|
1929 |
+
vision_patch_size, context_length, txt_length, vocab_size,
|
1930 |
+
transformer_width, transformer_heads, transformer_layers, patch_size,
|
1931 |
+
output_dim, ratio, emb_dim, fpn_in, fpn_out):
|
1932 |
+
super().__init__()
|
1933 |
+
# Vision & Text Encoder & Label Encoder
|
1934 |
+
vision_heads = vision_width * 32 // 64
|
1935 |
+
|
1936 |
+
backbone = CLIP(embed_dim, image_resolution, vision_layers, vision_width,
|
1937 |
+
vision_patch_size, context_length, txt_length, vocab_size,
|
1938 |
+
transformer_width, transformer_heads, transformer_layers)
|
1939 |
+
self.backbone = backbone.float()
|
1940 |
+
self.patch_emb = image_resolution // patch_size
|
1941 |
+
|
1942 |
+
self.FPN = ViTFPN(image_resolution, in_channels=fpn_in, out_channels=fpn_out)
|
1943 |
+
|
1944 |
+
self.ADP = Adapter(output_dim, 4)
|
1945 |
+
# parameter
|
1946 |
+
self.ratio = ratio
|
1947 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
1948 |
+
self.share_temperature = True
|
1949 |
+
self.ce = nn.CrossEntropyLoss()
|
1950 |
+
self.ms_adaptor = nn.ModuleList(
|
1951 |
+
[
|
1952 |
+
nn.Sequential(
|
1953 |
+
nn.ConvTranspose2d(emb_dim, emb_dim, 2, 2),
|
1954 |
+
nn.GroupNorm(32, emb_dim),
|
1955 |
+
nn.GELU(),
|
1956 |
+
nn.ConvTranspose2d(emb_dim, emb_dim, 2, 2),
|
1957 |
+
),
|
1958 |
+
nn.Sequential(
|
1959 |
+
nn.ConvTranspose2d(emb_dim, emb_dim, 2, 2),
|
1960 |
+
),
|
1961 |
+
nn.Sequential(
|
1962 |
+
nn.Identity(),
|
1963 |
+
),
|
1964 |
+
nn.Sequential(
|
1965 |
+
nn.MaxPool2d(2),
|
1966 |
+
),
|
1967 |
+
|
1968 |
+
]
|
1969 |
+
)
|
1970 |
+
|
1971 |
+
self.ms_adaptor.apply(self.init_adaptor)
|
1972 |
+
def init_adaptor(self, m):
|
1973 |
+
if isinstance(m, nn.Conv2d):
|
1974 |
+
lecun_normal_(m.weight)
|
1975 |
+
if m.bias is not None:
|
1976 |
+
nn.init.constant_(m.bias, 0)
|
1977 |
+
elif isinstance(m, nn.GroupNorm):
|
1978 |
+
nn.init.constant_(m.bias, 0)
|
1979 |
+
nn.init.constant_(m.weight, 1.0)
|
1980 |
+
elif isinstance(m, nn.ConvTranspose2d):
|
1981 |
+
lecun_normal_(m.weight)
|
1982 |
+
if m.bias is not None:
|
1983 |
+
nn.init.zeros_(m.bias)
|
1984 |
+
# self.fc = nn.Linear(512, cfg.num_classes)
|
1985 |
+
|
1986 |
+
def image_encode(self, img):
|
1987 |
+
vis, image = self.backbone.encode_image(img)
|
1988 |
+
|
1989 |
+
x = self.ADP(image)
|
1990 |
+
|
1991 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
1992 |
+
return x
|
1993 |
+
|
1994 |
+
def text_encode(self, txt):
|
1995 |
+
|
1996 |
+
word, text = self.backbone.encode_text(txt)
|
1997 |
+
|
1998 |
+
return text
|
1999 |
+
|
2000 |
+
def forward(self, img, txt):
|
2001 |
+
'''
|
2002 |
+
img: b, 3, h, w
|
2003 |
+
word: b, words
|
2004 |
+
word_mask: b, words
|
2005 |
+
mask: b, 1, h, w
|
2006 |
+
stage: 1st or 2nd stage
|
2007 |
+
'''
|
2008 |
+
# padding mask used in decoder
|
2009 |
+
pad_mask = torch.zeros_like(txt).masked_fill_(txt == 0, 1).bool()
|
2010 |
+
|
2011 |
+
# vis: C3 / C4 / C5 / b, 512, 28, 28/ b, 1024, 14, 14/ b, 1024, 7, 7
|
2012 |
+
# word: b, length, 512
|
2013 |
+
# text: b, 1024
|
2014 |
+
# image: b, 1024
|
2015 |
+
vis, image = self.backbone.encode_image(img)
|
2016 |
+
|
2017 |
+
word, text = self.backbone.encode_text(txt)
|
2018 |
+
|
2019 |
+
x = self.ADP(image)
|
2020 |
+
|
2021 |
+
x = self.ratio * x + (1 - self.ratio) * image
|
2022 |
+
# Construct multi-scale feats
|
2023 |
+
vis_trans = []
|
2024 |
+
for i in range(len(self.ms_adaptor)):
|
2025 |
+
x_ = rearrange(
|
2026 |
+
vis[i],
|
2027 |
+
"b (h w) c -> b c h w",
|
2028 |
+
h=self.patch_emb,
|
2029 |
+
w=self.patch_emb,
|
2030 |
+
).contiguous()
|
2031 |
+
|
2032 |
+
feats = self.ms_adaptor[i](x_)
|
2033 |
+
|
2034 |
+
vis_trans.append(feats)
|
2035 |
+
|
2036 |
+
# fq = self.FPN(vis, x_t)
|
2037 |
+
fv_t = self.FPN(vis_trans[1:], x, False)
|
2038 |
+
# fv_t = self.gap(fq_t)
|
2039 |
+
|
2040 |
+
# b, 1024
|
2041 |
+
fv = fv_t
|
2042 |
+
ft = text
|
2043 |
+
fi = x
|
2044 |
+
|
2045 |
+
return fv, fi, ft
|
cisen/utils/__pycache__/config.cpython-38.pyc
ADDED
Binary file (4.38 kB). View file
|
|
cisen/utils/__pycache__/dataset.cpython-38.pyc
ADDED
Binary file (12.9 kB). View file
|
|
cisen/utils/bpe_simple_vocab_16e6.txt.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b74bc90eaf4e663f1c0a9a01ffae52a90b2d22af1e733d15b2a1ea049b45ad37
|
3 |
+
size 132
|
cisen/utils/config.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -----------------------------------------------------------------------------
|
2 |
+
# Functions for parsing args
|
3 |
+
# -----------------------------------------------------------------------------
|
4 |
+
import copy
|
5 |
+
import os
|
6 |
+
from ast import literal_eval
|
7 |
+
|
8 |
+
import yaml
|
9 |
+
|
10 |
+
|
11 |
+
class CfgNode(dict):
|
12 |
+
"""
|
13 |
+
CfgNode represents an internal node in the configuration tree. It's a simple
|
14 |
+
dict-like container that allows for attribute-based access to keys.
|
15 |
+
"""
|
16 |
+
def __init__(self, init_dict=None, key_list=None, new_allowed=False):
|
17 |
+
# Recursively convert nested dictionaries in init_dict into CfgNodes
|
18 |
+
init_dict = {} if init_dict is None else init_dict
|
19 |
+
key_list = [] if key_list is None else key_list
|
20 |
+
for k, v in init_dict.items():
|
21 |
+
if type(v) is dict:
|
22 |
+
# Convert dict to CfgNode
|
23 |
+
init_dict[k] = CfgNode(v, key_list=key_list + [k])
|
24 |
+
super(CfgNode, self).__init__(init_dict)
|
25 |
+
|
26 |
+
def __getattr__(self, name):
|
27 |
+
if name in self:
|
28 |
+
return self[name]
|
29 |
+
else:
|
30 |
+
raise AttributeError(name)
|
31 |
+
|
32 |
+
def __setattr__(self, name, value):
|
33 |
+
self[name] = value
|
34 |
+
|
35 |
+
def __str__(self):
|
36 |
+
def _indent(s_, num_spaces):
|
37 |
+
s = s_.split("\n")
|
38 |
+
if len(s) == 1:
|
39 |
+
return s_
|
40 |
+
first = s.pop(0)
|
41 |
+
s = [(num_spaces * " ") + line for line in s]
|
42 |
+
s = "\n".join(s)
|
43 |
+
s = first + "\n" + s
|
44 |
+
return s
|
45 |
+
|
46 |
+
r = ""
|
47 |
+
s = []
|
48 |
+
for k, v in sorted(self.items()):
|
49 |
+
seperator = "\n" if isinstance(v, CfgNode) else " "
|
50 |
+
attr_str = "{}:{}{}".format(str(k), seperator, str(v))
|
51 |
+
attr_str = _indent(attr_str, 2)
|
52 |
+
s.append(attr_str)
|
53 |
+
r += "\n".join(s)
|
54 |
+
return r
|
55 |
+
|
56 |
+
def __repr__(self):
|
57 |
+
return "{}({})".format(self.__class__.__name__,
|
58 |
+
super(CfgNode, self).__repr__())
|
59 |
+
|
60 |
+
|
61 |
+
def load_cfg_from_cfg_file(file):
|
62 |
+
cfg = {}
|
63 |
+
assert os.path.isfile(file) and file.endswith('.yaml'), \
|
64 |
+
'{} is not a yaml file'.format(file)
|
65 |
+
|
66 |
+
with open(file, 'r') as f:
|
67 |
+
cfg_from_file = yaml.safe_load(f)
|
68 |
+
|
69 |
+
for key in cfg_from_file:
|
70 |
+
for k, v in cfg_from_file[key].items():
|
71 |
+
cfg[k] = v
|
72 |
+
|
73 |
+
cfg = CfgNode(cfg)
|
74 |
+
return cfg
|
75 |
+
|
76 |
+
|
77 |
+
def merge_cfg_from_list(cfg, cfg_list):
|
78 |
+
new_cfg = copy.deepcopy(cfg)
|
79 |
+
assert len(cfg_list) % 2 == 0
|
80 |
+
for full_key, v in zip(cfg_list[0::2], cfg_list[1::2]):
|
81 |
+
subkey = full_key.split('.')[-1]
|
82 |
+
assert subkey in cfg, 'Non-existent key: {}'.format(full_key)
|
83 |
+
value = _decode_cfg_value(v)
|
84 |
+
value = _check_and_coerce_cfg_value_type(value, cfg[subkey], subkey,
|
85 |
+
full_key)
|
86 |
+
setattr(new_cfg, subkey, value)
|
87 |
+
|
88 |
+
return new_cfg
|
89 |
+
|
90 |
+
|
91 |
+
def _decode_cfg_value(v):
|
92 |
+
"""Decodes a raw config value (e.g., from a yaml config files or command
|
93 |
+
line argument) into a Python object.
|
94 |
+
"""
|
95 |
+
# All remaining processing is only applied to strings
|
96 |
+
if not isinstance(v, str):
|
97 |
+
return v
|
98 |
+
# Try to interpret `v` as a:
|
99 |
+
# string, number, tuple, list, dict, boolean, or None
|
100 |
+
try:
|
101 |
+
v = literal_eval(v)
|
102 |
+
# The following two excepts allow v to pass through when it represents a
|
103 |
+
# string.
|
104 |
+
#
|
105 |
+
# Longer explanation:
|
106 |
+
# The type of v is always a string (before calling literal_eval), but
|
107 |
+
# sometimes it *represents* a string and other times a data structure, like
|
108 |
+
# a list. In the case that v represents a string, what we got back from the
|
109 |
+
# yaml parser is 'foo' *without quotes* (so, not '"foo"'). literal_eval is
|
110 |
+
# ok with '"foo"', but will raise a ValueError if given 'foo'. In other
|
111 |
+
# cases, like paths (v = 'foo/bar' and not v = '"foo/bar"'), literal_eval
|
112 |
+
# will raise a SyntaxError.
|
113 |
+
except ValueError:
|
114 |
+
pass
|
115 |
+
except SyntaxError:
|
116 |
+
pass
|
117 |
+
return v
|
118 |
+
|
119 |
+
|
120 |
+
def _check_and_coerce_cfg_value_type(replacement, original, key, full_key):
|
121 |
+
"""Checks that `replacement`, which is intended to replace `original` is of
|
122 |
+
the right type. The type is correct if it matches exactly or is one of a few
|
123 |
+
cases in which the type can be easily coerced.
|
124 |
+
"""
|
125 |
+
original_type = type(original)
|
126 |
+
replacement_type = type(replacement)
|
127 |
+
|
128 |
+
# The types must match (with some exceptions)
|
129 |
+
if replacement_type == original_type:
|
130 |
+
return replacement
|
131 |
+
|
132 |
+
# Cast replacement from from_type to to_type if the replacement and original
|
133 |
+
# types match from_type and to_type
|
134 |
+
def conditional_cast(from_type, to_type):
|
135 |
+
if replacement_type == from_type and original_type == to_type:
|
136 |
+
return True, to_type(replacement)
|
137 |
+
else:
|
138 |
+
return False, None
|
139 |
+
|
140 |
+
# Conditionally casts
|
141 |
+
# list <-> tuple
|
142 |
+
casts = [(tuple, list), (list, tuple)]
|
143 |
+
# For py2: allow converting from str (bytes) to a unicode string
|
144 |
+
try:
|
145 |
+
casts.append((str, unicode)) # noqa: F821
|
146 |
+
except Exception:
|
147 |
+
pass
|
148 |
+
|
149 |
+
for (from_type, to_type) in casts:
|
150 |
+
converted, converted_value = conditional_cast(from_type, to_type)
|
151 |
+
if converted:
|
152 |
+
return converted_value
|
153 |
+
|
154 |
+
raise ValueError(
|
155 |
+
"Type mismatch ({} vs. {}) with values ({} vs. {}) for config "
|
156 |
+
"key: {}".format(original_type, replacement_type, original,
|
157 |
+
replacement, full_key))
|
cisen/utils/dataset.py
ADDED
@@ -0,0 +1,478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List, Union
|
3 |
+
import random
|
4 |
+
|
5 |
+
import json
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
import torch
|
9 |
+
from torch.utils.data import Dataset
|
10 |
+
from torchvision import transforms
|
11 |
+
from loguru import logger
|
12 |
+
|
13 |
+
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
14 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
15 |
+
_tokenizer = _Tokenizer()
|
16 |
+
|
17 |
+
# text_tokenize = AutoTokenizer.from_pretrained("./Taiyi-CLIP-s", model_max_length=512)
|
18 |
+
def tokenize(texts: Union[str, List[str]],
|
19 |
+
context_length: int = 77,
|
20 |
+
truncate: bool = False) -> torch.LongTensor:
|
21 |
+
"""
|
22 |
+
Returns the tokenized representation of given input string(s)
|
23 |
+
|
24 |
+
Parameters
|
25 |
+
----------
|
26 |
+
texts : Union[str, List[str]]
|
27 |
+
An input string or a list of input strings to tokenize
|
28 |
+
|
29 |
+
context_length : int
|
30 |
+
The context length to use; all CLIP models use 77 as the context length
|
31 |
+
|
32 |
+
truncate: bool
|
33 |
+
Whether to truncate the text in case its encoding is longer than the context length
|
34 |
+
|
35 |
+
Returns
|
36 |
+
-------
|
37 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
38 |
+
"""
|
39 |
+
if isinstance(texts, str):
|
40 |
+
texts = [texts]
|
41 |
+
|
42 |
+
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
43 |
+
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
44 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token]
|
45 |
+
for text in texts]
|
46 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
47 |
+
|
48 |
+
for i, tokens in enumerate(all_tokens):
|
49 |
+
if len(tokens) > context_length:
|
50 |
+
if truncate:
|
51 |
+
tokens = tokens[:context_length]
|
52 |
+
tokens[-1] = eot_token
|
53 |
+
else:
|
54 |
+
raise RuntimeError(
|
55 |
+
f"Input {texts[i]} is too long for context length {context_length}"
|
56 |
+
)
|
57 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
58 |
+
|
59 |
+
return result
|
60 |
+
|
61 |
+
def select_idxs(seq_length, n_to_select, n_from_select, seed=42):
|
62 |
+
"""
|
63 |
+
Select n_to_select indexes from each consequent n_from_select indexes from range with length seq_length, split
|
64 |
+
selected indexes to separate arrays
|
65 |
+
|
66 |
+
Example:
|
67 |
+
|
68 |
+
seq_length = 20
|
69 |
+
n_from_select = 5
|
70 |
+
n_to_select = 2
|
71 |
+
|
72 |
+
input, range of length seq_length:
|
73 |
+
range = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
|
74 |
+
|
75 |
+
sequences of length n_from_select:
|
76 |
+
sequences = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]
|
77 |
+
|
78 |
+
selected n_to_select elements from each sequence
|
79 |
+
selected = [[0, 4], [7, 9], [13, 14], [16, 18]]
|
80 |
+
|
81 |
+
output, n_to_select lists of length seq_length / n_from_select:
|
82 |
+
output = [[0, 7, 13, 16], [4, 9, 14, 18]]
|
83 |
+
|
84 |
+
:param seq_length: length of sequence, say 10
|
85 |
+
:param n_to_select: number of elements to select
|
86 |
+
:param n_from_select: number of consequent elements
|
87 |
+
:return:
|
88 |
+
"""
|
89 |
+
random.seed(seed)
|
90 |
+
idxs = [[] for _ in range(n_to_select)]
|
91 |
+
for i in range(seq_length // n_from_select):
|
92 |
+
ints = random.sample(range(n_from_select), n_to_select)
|
93 |
+
for j in range(n_to_select):
|
94 |
+
idxs[j].append(i * n_from_select + ints[j])
|
95 |
+
return idxs
|
96 |
+
|
97 |
+
def read_json(file_name, suppress_console_info=False):
|
98 |
+
"""
|
99 |
+
Read JSON
|
100 |
+
|
101 |
+
:param file_name: input JSON path
|
102 |
+
:param suppress_console_info: toggle console printing
|
103 |
+
:return: dictionary from JSON
|
104 |
+
"""
|
105 |
+
with open(file_name, 'r') as f:
|
106 |
+
data = json.load(f)
|
107 |
+
if not suppress_console_info:
|
108 |
+
print("Read from:", file_name)
|
109 |
+
return data
|
110 |
+
|
111 |
+
def get_image_file_names(data, suppress_console_info=False):# ok
|
112 |
+
"""
|
113 |
+
Get list of image file names
|
114 |
+
|
115 |
+
:param data: original data from JSON
|
116 |
+
:param suppress_console_info: toggle console printing
|
117 |
+
:return: list of strings (file names)
|
118 |
+
"""
|
119 |
+
|
120 |
+
file_names = []
|
121 |
+
for img in data['images']:
|
122 |
+
image_name = img["image_name"]
|
123 |
+
sample_id = img["sample_id"]
|
124 |
+
path_data = f'{sample_id}/{image_name}'
|
125 |
+
file_names.append(path_data)
|
126 |
+
if not suppress_console_info:
|
127 |
+
print("Total number of files:", len(file_names))
|
128 |
+
return file_names
|
129 |
+
|
130 |
+
def get_images(file_names, args):
|
131 |
+
transform = transforms.Compose([
|
132 |
+
transforms.Resize(224),
|
133 |
+
transforms.CenterCrop(224),
|
134 |
+
transforms.ToTensor(),
|
135 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
136 |
+
])
|
137 |
+
imgs = []
|
138 |
+
for i in range(len(file_names)):
|
139 |
+
|
140 |
+
img = np.array(transform(Image.open(os.path.join(args.imgs_folder, file_names[i]))))
|
141 |
+
imgs.append(img)
|
142 |
+
|
143 |
+
return np.array(imgs)
|
144 |
+
|
145 |
+
def get_captions(data, suppress_console_info=False):
|
146 |
+
"""
|
147 |
+
Get list of formatted captions
|
148 |
+
:param data: original data from JSON
|
149 |
+
:return: list of strings (captions)
|
150 |
+
"""
|
151 |
+
def format_caption(string):
|
152 |
+
return string.replace('.', '').replace(',', '').replace('!', '').replace('?', '').lower()
|
153 |
+
|
154 |
+
captions = []
|
155 |
+
augmented_captions_rb = []
|
156 |
+
augmented_captions_bt_prob = []
|
157 |
+
augmented_captions_bt_chain = []
|
158 |
+
for img in data['images']:
|
159 |
+
for sent in img['sentences']:
|
160 |
+
captions.append(format_caption(sent['raw']))
|
161 |
+
try:
|
162 |
+
augmented_captions_rb.append(format_caption(sent['aug_rb']))
|
163 |
+
except:
|
164 |
+
pass
|
165 |
+
try:
|
166 |
+
augmented_captions_bt_prob.append(format_caption(sent['aug_bt_prob']))
|
167 |
+
except:
|
168 |
+
pass
|
169 |
+
try:
|
170 |
+
augmented_captions_bt_chain.append(format_caption(sent['aug_bt_chain']))
|
171 |
+
except:
|
172 |
+
pass
|
173 |
+
if not suppress_console_info:
|
174 |
+
logger.info("Total number of captions:{}", len(captions))
|
175 |
+
logger.info("Total number of augmented captions RB:{}", len(augmented_captions_rb))
|
176 |
+
logger.info("Total number of augmented captions BT (prob):{}", len(augmented_captions_bt_prob))
|
177 |
+
logger.info("Total number of augmented captions BT (chain):{}", len(augmented_captions_bt_chain))
|
178 |
+
return captions, augmented_captions_rb, augmented_captions_bt_prob, augmented_captions_bt_chain
|
179 |
+
|
180 |
+
def get_labels(data, suppress_console_info=False):
|
181 |
+
"""
|
182 |
+
Get list of labels
|
183 |
+
|
184 |
+
:param data: original data from JSON
|
185 |
+
:param suppress_console_info: toggle console printing
|
186 |
+
:return: list ints (labels)
|
187 |
+
"""
|
188 |
+
|
189 |
+
labels = []
|
190 |
+
for img in data['images']:
|
191 |
+
labels.append(img["classcode"])
|
192 |
+
if not suppress_console_info:
|
193 |
+
print("Total number of labels:", len(labels))
|
194 |
+
return labels
|
195 |
+
|
196 |
+
def remove_tokens(data):
|
197 |
+
"""
|
198 |
+
Removes 'tokens' key from caption record, if exists; halves the size of the file
|
199 |
+
|
200 |
+
:param data: original data
|
201 |
+
:return: data without tokens
|
202 |
+
"""
|
203 |
+
for img in data['images']:
|
204 |
+
for sent in img['sentences']:
|
205 |
+
try:
|
206 |
+
sent.pop("tokens")
|
207 |
+
except:
|
208 |
+
pass
|
209 |
+
return data
|
210 |
+
|
211 |
+
def write_json(file_name, data):
|
212 |
+
"""
|
213 |
+
Write dictionary to JSON file
|
214 |
+
|
215 |
+
:param file_name: output path
|
216 |
+
:param data: dictionary
|
217 |
+
:return: None
|
218 |
+
"""
|
219 |
+
bn = os.path.basename(file_name)
|
220 |
+
dn = os.path.dirname(file_name)
|
221 |
+
name, ext = os.path.splitext(bn)
|
222 |
+
file_name = os.path.join(dn, name + '.json')
|
223 |
+
with open(file_name, 'w') as f:
|
224 |
+
f.write(json.dumps(data, indent='\t'))
|
225 |
+
print("Written to:", file_name)
|
226 |
+
|
227 |
+
def get_split_idxs(arr_len, args):
|
228 |
+
"""
|
229 |
+
Get indexes for training, query and db subsets
|
230 |
+
|
231 |
+
:param: arr_len: array length
|
232 |
+
|
233 |
+
:return: indexes for training, query and db subsets
|
234 |
+
"""
|
235 |
+
idx_all = list(range(arr_len))
|
236 |
+
idx_train, idx_eval = split_indexes(idx_all, args.dataset_train_split)
|
237 |
+
idx_query, idx_db = split_indexes(idx_eval, args.dataset_query_split)
|
238 |
+
|
239 |
+
return idx_train, idx_eval, idx_query, idx_db
|
240 |
+
|
241 |
+
def split_indexes(idx_all, split):
|
242 |
+
"""
|
243 |
+
Splits list in two parts.
|
244 |
+
|
245 |
+
:param idx_all: array to split
|
246 |
+
:param split: portion to split
|
247 |
+
:return: splitted lists
|
248 |
+
"""
|
249 |
+
idx_length = len(idx_all)
|
250 |
+
selection_length = int(idx_length * split)
|
251 |
+
|
252 |
+
idx_selection = sorted(random.sample(idx_all, selection_length))
|
253 |
+
|
254 |
+
idx_rest = sorted(list(set(idx_all).difference(set(idx_selection))))
|
255 |
+
|
256 |
+
return idx_selection, idx_rest
|
257 |
+
|
258 |
+
def get_caption_idxs(idx_train, idx_query, idx_db):
|
259 |
+
"""
|
260 |
+
Get caption indexes.
|
261 |
+
|
262 |
+
:param: idx_train: train image (and label) indexes
|
263 |
+
:param: idx_query: query image (and label) indexes
|
264 |
+
:param: idx_db: db image (and label) indexes
|
265 |
+
|
266 |
+
:return: caption indexes for corresponding index sets
|
267 |
+
"""
|
268 |
+
idx_train_cap = get_caption_idxs_from_img_idxs(idx_train, num=5)
|
269 |
+
idx_query_cap = get_caption_idxs_from_img_idxs(idx_query, num=5)
|
270 |
+
idx_db_cap = get_caption_idxs_from_img_idxs(idx_db)
|
271 |
+
return idx_train_cap, idx_query_cap, idx_db_cap
|
272 |
+
|
273 |
+
def get_caption_idxs_from_img_idxs(img_idxs, num=5):
|
274 |
+
"""
|
275 |
+
Get caption indexes. There are 5 captions for each image (and label).
|
276 |
+
Say, img indexes - [0, 10, 100]
|
277 |
+
Then, caption indexes - [0, 1, 2, 3, 4, 50, 51, 52, 53, 54, 100, 501, 502, 503, 504]
|
278 |
+
|
279 |
+
:param: img_idxs: image (and label) indexes
|
280 |
+
|
281 |
+
:return: caption indexes
|
282 |
+
"""
|
283 |
+
caption_idxs = []
|
284 |
+
for idx in img_idxs:
|
285 |
+
for i in range(num): # each image has 5 captions
|
286 |
+
caption_idxs.append(idx * num + i)
|
287 |
+
return caption_idxs
|
288 |
+
|
289 |
+
def split_data(images, captions, labels, captions_aug, images_aug, args):
|
290 |
+
"""
|
291 |
+
Split dataset to get training, query and db subsets
|
292 |
+
|
293 |
+
:param: images: image embeddings array
|
294 |
+
:param: captions: caption embeddings array
|
295 |
+
:param: labels: labels array
|
296 |
+
:param: captions_aug: augmented caption embeddings
|
297 |
+
:param: images_aug: augmented image embeddings
|
298 |
+
|
299 |
+
:return: tuples of (images, captions, labels), each element is array
|
300 |
+
"""
|
301 |
+
idx_tr, idx_q, idx_db = get_split_idxs(len(images), args)
|
302 |
+
idx_tr_cap, idx_q_cap, idx_db_cap = get_caption_idxs(idx_tr, idx_q, idx_db)
|
303 |
+
|
304 |
+
train = images[idx_tr], captions[idx_tr_cap], labels[idx_tr], (idx_tr, idx_tr_cap), captions_aug[idx_tr_cap], \
|
305 |
+
images_aug[idx_tr]
|
306 |
+
query = images[idx_q], captions[idx_q_cap], labels[idx_q], (idx_q, idx_q_cap), captions_aug[idx_q_cap], \
|
307 |
+
images_aug[idx_q]
|
308 |
+
db = images[idx_db], captions[idx_db_cap], labels[idx_db], (idx_db, idx_db_cap), captions_aug[idx_db_cap], \
|
309 |
+
images_aug[idx_db]
|
310 |
+
|
311 |
+
return train, query, db
|
312 |
+
|
313 |
+
def select_idxs(seq_length, n_to_select, n_from_select, seed=42):
|
314 |
+
"""
|
315 |
+
Select n_to_select indexes from each consequent n_from_select indexes from range with length seq_length, split
|
316 |
+
selected indexes to separate arrays
|
317 |
+
|
318 |
+
Example:
|
319 |
+
|
320 |
+
seq_length = 20
|
321 |
+
n_from_select = 5
|
322 |
+
n_to_select = 2
|
323 |
+
|
324 |
+
input, range of length seq_length:
|
325 |
+
range = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
|
326 |
+
|
327 |
+
sequences of length n_from_select:
|
328 |
+
sequences = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]
|
329 |
+
|
330 |
+
selected n_to_select elements from each sequence
|
331 |
+
selected = [[0, 4], [7, 9], [13, 14], [16, 18]]
|
332 |
+
|
333 |
+
output, n_to_select lists of length seq_length / n_from_select:
|
334 |
+
output = [[0, 7, 13, 16], [4, 9, 14, 18]]
|
335 |
+
|
336 |
+
:param seq_length: length of sequence, say 10
|
337 |
+
:param n_to_select: number of elements to select
|
338 |
+
:param n_from_select: number of consequent elements
|
339 |
+
:return:
|
340 |
+
"""
|
341 |
+
random.seed(seed)
|
342 |
+
idxs = [[] for _ in range(n_to_select)]
|
343 |
+
for i in range(seq_length // n_from_select):
|
344 |
+
ints = random.sample(range(n_from_select), n_to_select)
|
345 |
+
for j in range(n_to_select):
|
346 |
+
idxs[j].append(i * n_from_select + ints[j])
|
347 |
+
return idxs
|
348 |
+
|
349 |
+
class AbstractDataset(torch.utils.data.Dataset):
|
350 |
+
|
351 |
+
def __init__(self, images, captions, labels, targets, idxs):
|
352 |
+
|
353 |
+
self.image_replication_factor = 1 # default value, how many times we need to replicate image
|
354 |
+
|
355 |
+
self.images = images
|
356 |
+
self.captions = captions
|
357 |
+
self.labels = labels
|
358 |
+
self.targets = targets
|
359 |
+
|
360 |
+
self.idxs = np.array(idxs[0])
|
361 |
+
|
362 |
+
|
363 |
+
def __getitem__(self, index):
|
364 |
+
return
|
365 |
+
|
366 |
+
def __len__(self):
|
367 |
+
return
|
368 |
+
|
369 |
+
class CISENDataset(torch.utils.data.Dataset):
|
370 |
+
"""
|
371 |
+
Class for dataset representation.
|
372 |
+
Each image has 5 corresponding captions
|
373 |
+
Duplet dataset sample - img-txt (image and corresponding caption)
|
374 |
+
"""
|
375 |
+
def __init__(self, images, captions, args):
|
376 |
+
"""
|
377 |
+
Initialization.
|
378 |
+
:param images: image embeddings vector
|
379 |
+
:param captions: captions embeddings vector
|
380 |
+
:param labels: labels vector
|
381 |
+
"""
|
382 |
+
super().__init__()
|
383 |
+
|
384 |
+
self.images = images
|
385 |
+
self.captions = captions
|
386 |
+
# self.targets = targets
|
387 |
+
# self.labels = labels
|
388 |
+
|
389 |
+
self.word_len = args.word_len
|
390 |
+
|
391 |
+
def __getitem__(self, index):
|
392 |
+
"""
|
393 |
+
Returns a tuple (img, txt, label) - image and corresponding caption
|
394 |
+
:param index: index of sample
|
395 |
+
:return: tuple (img, txt, label)
|
396 |
+
"""
|
397 |
+
return (
|
398 |
+
torch.from_numpy(self.images[index].astype('float32')),
|
399 |
+
torch.from_numpy(np.array(tokenize(self.captions[index], self.word_len).squeeze(0)).astype('int64'))
|
400 |
+
# ,torch.from_numpy(self.targets[index])
|
401 |
+
)
|
402 |
+
|
403 |
+
def __len__(self):
|
404 |
+
return len(self.images)
|
405 |
+
|
406 |
+
|
407 |
+
class DatasetDuplet(AbstractDataset):
|
408 |
+
"""
|
409 |
+
Class for dataset representation.
|
410 |
+
Each image has 5 corresponding captions
|
411 |
+
Duplet dataset sample - img-txt (image and corresponding caption)
|
412 |
+
"""
|
413 |
+
def __init__(self, images, captions, labels, targets, idxs, args):
|
414 |
+
"""
|
415 |
+
Initialization.
|
416 |
+
:param images: image embeddings vector
|
417 |
+
:param captions: captions embeddings vector
|
418 |
+
:param labels: labels vector
|
419 |
+
"""
|
420 |
+
super().__init__(images, captions, labels, targets, idxs)
|
421 |
+
|
422 |
+
self.word_len = args.word_len
|
423 |
+
|
424 |
+
def __getitem__(self, index):
|
425 |
+
"""
|
426 |
+
Returns a tuple (img, txt, label) - image and corresponding caption
|
427 |
+
:param index: index of sample
|
428 |
+
:return: tuple (img, txt, label)
|
429 |
+
"""
|
430 |
+
return (
|
431 |
+
index,
|
432 |
+
torch.from_numpy(self.images[index].astype('float32')),
|
433 |
+
torch.from_numpy(np.array(tokenize(self.captions[index] + self.captions[index], self.word_len).squeeze(0)).astype('int64')),
|
434 |
+
self.labels[index],
|
435 |
+
self.targets[index]
|
436 |
+
)
|
437 |
+
|
438 |
+
def __len__(self):
|
439 |
+
return len(self.images)
|
440 |
+
|
441 |
+
class ModifiedDatasetDuplet(AbstractDataset):
|
442 |
+
"""
|
443 |
+
Class for dataset representation.
|
444 |
+
|
445 |
+
Each image has 5 corresponding captions
|
446 |
+
|
447 |
+
Duplet dataset sample - img-txt (image and corresponding caption)
|
448 |
+
"""
|
449 |
+
|
450 |
+
def __init__(self, images, captions, labels, targets, idxs, args):
|
451 |
+
"""
|
452 |
+
Initialization.
|
453 |
+
|
454 |
+
:param images: image embeddings vector
|
455 |
+
:param captions: captions embeddings vector
|
456 |
+
:param labels: labels vector
|
457 |
+
"""
|
458 |
+
super().__init__(images, captions, labels, targets, idxs)
|
459 |
+
|
460 |
+
|
461 |
+
def __getitem__(self, index):
|
462 |
+
"""
|
463 |
+
Returns a tuple (img, txt, label) - image and corresponding caption
|
464 |
+
|
465 |
+
:param index: index of sample
|
466 |
+
:return: tuple (img, txt, label)
|
467 |
+
"""
|
468 |
+
text = text_tokenize(self.captions[index], return_tensors='pt', padding='max_length', truncation='longest_first')['input_ids']
|
469 |
+
return (
|
470 |
+
index,
|
471 |
+
torch.from_numpy(self.images[index].astype('float32')),
|
472 |
+
torch.from_numpy(np.array(text_tokenize(self.captions[index], return_tensors='pt', padding='max_length', truncation='longest_first')['input_ids']).astype('int64')),
|
473 |
+
self.labels[index],
|
474 |
+
self.targets[index]
|
475 |
+
)
|
476 |
+
|
477 |
+
def __len__(self):
|
478 |
+
return len(self.images)
|
cisen/utils/hash.py
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.autograd import Variable
|
3 |
+
import numpy as np
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
import math
|
7 |
+
|
8 |
+
def init_hash(dataloader, args):
|
9 |
+
dataset_size = len(dataloader.dataset)
|
10 |
+
B = torch.randn(dataset_size, args.hash_dim).sign().cuda(non_blocking=True)
|
11 |
+
H = torch.zeros(dataset_size, args.hash_dim).sign().cuda(non_blocking=True)
|
12 |
+
Hi = torch.zeros(dataset_size, args.hash_dim).sign().cuda(non_blocking=True)
|
13 |
+
Ht = torch.zeros(dataset_size, args.hash_dim).sign().cuda(non_blocking=True)
|
14 |
+
|
15 |
+
return B, H, Hi, Ht
|
16 |
+
|
17 |
+
def GenerateCode(model, data_loader, args):
|
18 |
+
|
19 |
+
num_data = len(data_loader.dataset)
|
20 |
+
B = np.zeros([num_data, args.hash_dim], dtype=np.float32)
|
21 |
+
Bi = np.zeros([num_data, args.hash_dim], dtype=np.float32)
|
22 |
+
Bt = np.zeros([num_data, args.hash_dim], dtype=np.float32)
|
23 |
+
for i, (idx, image, text, label, target) in enumerate(data_loader, 0):
|
24 |
+
image = image.cuda(non_blocking = True)
|
25 |
+
text = text.cuda(non_blocking = True)
|
26 |
+
|
27 |
+
img_hash, txt_hash, output, output_s = model(image, text)
|
28 |
+
|
29 |
+
B[idx, :] = torch.sign(output.detach().cpu()).numpy()
|
30 |
+
Bi[idx, :] = torch.sign(img_hash.detach().cpu()).numpy()
|
31 |
+
Bt[idx, :] = torch.sign(txt_hash.detach().cpu()).numpy()
|
32 |
+
|
33 |
+
return B, Bi, Bt
|
34 |
+
|
35 |
+
|
36 |
+
def CalcSim(batch_label, train_label):
|
37 |
+
S = (batch_label.mm(train_label.t()) > 0)
|
38 |
+
return S
|
39 |
+
|
40 |
+
# loss
|
41 |
+
def Logtrick(x):
|
42 |
+
|
43 |
+
lt = torch.log(1+torch.exp(-torch.abs(x))).cuda() + torch.max(x, Variable(torch.FloatTensor([0.]).cuda()))
|
44 |
+
|
45 |
+
return lt
|
46 |
+
|
47 |
+
class NTXentLoss(nn.Module):
|
48 |
+
|
49 |
+
"""
|
50 |
+
Normalized Temperature-scaled Cross-entropy Loss (NTXent Loss).
|
51 |
+
|
52 |
+
Contains single-modal and cross-modal implementations.
|
53 |
+
|
54 |
+
"""
|
55 |
+
|
56 |
+
def __init__(self, temperature=1, eps=1e-6):
|
57 |
+
super(NTXentLoss, self).__init__()
|
58 |
+
self.temperature = temperature
|
59 |
+
self.eps = eps
|
60 |
+
|
61 |
+
def forward(self, *args, type='orig'):
|
62 |
+
if type == 'cross':
|
63 |
+
return self.forward_cross_modal(*args)
|
64 |
+
if type == 'orig':
|
65 |
+
return self.forward_orig(*args)
|
66 |
+
if type == 'both':
|
67 |
+
return self.forward_orig(*args), self.forward_cross_modal(*args)
|
68 |
+
else:
|
69 |
+
raise Exception("Wrong NTXent loss type, must be: 'cross', 'orig' or 'both'")
|
70 |
+
|
71 |
+
def forward_cross_modal(self, mod1, mod2):
|
72 |
+
"""
|
73 |
+
Cross-modal case:
|
74 |
+
|
75 |
+
p - positive pair
|
76 |
+
n - negative pair
|
77 |
+
sim - cosine similarity
|
78 |
+
|
79 |
+
ix - image modality feature number x
|
80 |
+
tx - text modality feature number x
|
81 |
+
|
82 |
+
Cross-modal case of NTXent doesn't consider similarities inside of the same modality
|
83 |
+
|
84 |
+
Similarities matrix: exp(sim(i, y))
|
85 |
+
+--+--+--+--+--+--+--+
|
86 |
+
| |i1|i2|i3|t1|t2|t3|
|
87 |
+
Modality +--+--+--+--+--+--+--+
|
88 |
+
Features |i1|0 |0 |0 |p |n |n |
|
89 |
+
+--+ +--+ +--+--+--+--+--+--+--+
|
90 |
+
|i1| |t1| |i2|0 |0 |0 |n |p |n |
|
91 |
+
+--+ +--+ +--+--+--+--+--+--+--+
|
92 |
+
|i2| |t2| ------> |i3|0 |0 |0 |n |n |p |
|
93 |
+
+--+ +--+ +--+--+--+--+--+--+--+
|
94 |
+
|i3| |t3| |t1|p |n |n |0 |0 |0 |
|
95 |
+
+--+ +--+ +--+--+--+--+--+--+--+
|
96 |
+
|t2|n |p |n |0 |0 |0 |
|
97 |
+
+--+--+--+--+--+--+--+
|
98 |
+
|t3|n |n |p |0 |0 |0 |
|
99 |
+
+--+--+--+--+--+--+--+
|
100 |
+
|
101 |
+
:param: mod1: features of the 1st modality
|
102 |
+
:param: mod1: features of the 2nd modality
|
103 |
+
:return: NTXent loss
|
104 |
+
|
105 |
+
"""
|
106 |
+
# normalize for numerical stability
|
107 |
+
mod1 = F.normalize(mod1)
|
108 |
+
mod2 = F.normalize(mod2)
|
109 |
+
|
110 |
+
out = torch.cat([mod1, mod2], dim=0)
|
111 |
+
|
112 |
+
# cov and sim: [2 * batch_size, 2 * batch_size * world_size]
|
113 |
+
|
114 |
+
cov = torch.mm(out, out.t().contiguous()) # cosine similarities matrix
|
115 |
+
sim = torch.exp(cov / self.temperature)
|
116 |
+
|
117 |
+
# mask for cross-modal case, nullifies certain regions (see docstring)
|
118 |
+
zeros = torch.zeros(mod1.shape[0], mod1.shape[0]).to(sim.device)
|
119 |
+
ones = torch.ones(mod1.shape[0], mod1.shape[0]).to(sim.device)
|
120 |
+
mask = torch.hstack([torch.vstack([zeros, ones]), torch.vstack([ones, zeros])]).to(sim.device)
|
121 |
+
|
122 |
+
sim = sim * mask
|
123 |
+
|
124 |
+
# neg: [2 * batch_size]
|
125 |
+
# negative pairs sum
|
126 |
+
neg = sim.sum(dim=1)
|
127 |
+
|
128 |
+
# Positive similarity, pos becomes [2 * batch_size]
|
129 |
+
pos = torch.exp(torch.sum(mod1 * mod2, dim=-1) / self.temperature)
|
130 |
+
pos = torch.cat([pos, pos], dim=0)
|
131 |
+
|
132 |
+
loss = -torch.log(pos / (neg + self.eps)).sum()
|
133 |
+
return loss
|
134 |
+
|
135 |
+
def forward_orig(self, out_1, out_2):
|
136 |
+
"""
|
137 |
+
Implementation taken from:
|
138 |
+
https://github.com/PyTorchLightning/lightning-bolts/blob/master/pl_bolts/models/self_supervised/simclr/simclr_module.py
|
139 |
+
|
140 |
+
p - positive pair
|
141 |
+
n - negative pair
|
142 |
+
sim - cosine similarity
|
143 |
+
e - Euler's number
|
144 |
+
|
145 |
+
ix - value x of input feature vector i
|
146 |
+
tx - value x of input feature vector t
|
147 |
+
|
148 |
+
Similarities matrix: exp(sim(i, y))
|
149 |
+
+--+--+--+--+--+--+--+
|
150 |
+
| |i1|i2|i3|t1|t2|t3|
|
151 |
+
Modality +--+--+--+--+--+--+--+
|
152 |
+
Features |i1|e |n |n |p |n |n |
|
153 |
+
+--+ +--+ +--+--+--+--+--+--+--+
|
154 |
+
|i1| |t1| |i2|n |e |n |n |p |n |
|
155 |
+
+--+ +--+ +--+--+--+--+--+--+--+
|
156 |
+
|i2| |t2| ------> |i3|n |n |e |n |n |p |
|
157 |
+
+--+ +--+ +--+--+--+--+--+--+--+
|
158 |
+
|i3| |t3| |t1|p |n |n |e |n |n |
|
159 |
+
+--+ +--+ +--+--+--+--+--+--+--+
|
160 |
+
|t2|n |p |n |n |e |n |
|
161 |
+
+--+--+--+--+--+--+--+
|
162 |
+
|t3|n |n |p |n |n |e |
|
163 |
+
+--+--+--+--+--+--+--+
|
164 |
+
|
165 |
+
:param out_1: input feature vector i
|
166 |
+
:param out_2: input feature vector t
|
167 |
+
:return: NTXent loss
|
168 |
+
"""
|
169 |
+
out_1 = F.normalize(out_1)
|
170 |
+
out_2 = F.normalize(out_2)
|
171 |
+
|
172 |
+
out = torch.cat([out_1, out_2], dim=0)
|
173 |
+
|
174 |
+
# cov and sim: [2 * batch_size, 2 * batch_size * world_size]
|
175 |
+
# neg: [2 * batch_size]
|
176 |
+
cov = torch.mm(out, out.t().contiguous())
|
177 |
+
sim = torch.exp(cov / self.temperature)
|
178 |
+
neg = sim.sum(dim=-1)
|
179 |
+
|
180 |
+
# from each row, subtract e^1 to remove similarity measure for x1.x1
|
181 |
+
row_sub = torch.Tensor(neg.shape).fill_(math.e).to(neg.device)
|
182 |
+
neg = torch.clamp(neg - row_sub, min=self.eps) # clamp for numerical stability
|
183 |
+
|
184 |
+
# Positive similarity, pos becomes [2 * batch_size]
|
185 |
+
o = out_1 * out_2
|
186 |
+
pos = torch.exp(torch.sum(out_1 * out_2, dim=-1) / self.temperature)
|
187 |
+
pos = torch.cat([pos, pos], dim=0)
|
188 |
+
|
189 |
+
loss = -torch.log(pos / (neg + self.eps)).mean()
|
190 |
+
return loss
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
"""
|
195 |
+
|
196 |
+
out_hash: real-value code
|
197 |
+
|
198 |
+
H: total real-value code
|
199 |
+
|
200 |
+
Bbatch: batch hash code
|
201 |
+
|
202 |
+
S: similarity
|
203 |
+
|
204 |
+
num_train: number of train
|
205 |
+
|
206 |
+
num_batch: batchsize
|
207 |
+
|
208 |
+
"""
|
209 |
+
|
210 |
+
def Calcloss(out_hash, H, Bbatch, S, num_train, num_batch, args):
|
211 |
+
theta_x = out_hash.float().mm(Variable(H.cuda()).t()) / 2
|
212 |
+
|
213 |
+
logloss = (Variable(S.cuda()) * theta_x - Logtrick(theta_x)).sum() \
|
214 |
+
/ (num_train * num_batch)
|
215 |
+
|
216 |
+
regterm = (Bbatch - out_hash).pow(2).sum() / (num_train * num_batch)
|
217 |
+
|
218 |
+
|
219 |
+
loss_p = - logloss + args.lamda * regterm
|
220 |
+
return logloss, regterm, loss_p
|
221 |
+
|
222 |
+
def CalcNTXentLoss(img_hash, txt_hash, out_hash, Criterion, args):
|
223 |
+
"""
|
224 |
+
Calculate NTXent Loss
|
225 |
+
|
226 |
+
:param: h_img1: batch of image hashes #1 (original)
|
227 |
+
:param: h_img2: batch of image hashes #2 (augmented)
|
228 |
+
:param: h_txt1: batch of text hashes #1 (original)
|
229 |
+
:param: h_txt2: batch of text hashes #2 (augmented)
|
230 |
+
|
231 |
+
:returns: NTXent Loss
|
232 |
+
"""
|
233 |
+
loss_ntxent_inter1 = Criterion(img_hash, txt_hash, type='cross')
|
234 |
+
loss_ntxent_inter2 = Criterion(img_hash, out_hash, type='orig')
|
235 |
+
loss_ntxent_inter3 = Criterion(out_hash, txt_hash, type='orig')
|
236 |
+
# loss_ntxent_intra = Criterion(out_hash, out_hash, type='orig') * args.contrastive_weights[1]
|
237 |
+
|
238 |
+
loss_ntxent = loss_ntxent_inter1 * args.contrastive[0] + loss_ntxent_inter2 * args.contrastive[1] + loss_ntxent_inter3 * args.contrastive[2]
|
239 |
+
return loss_ntxent
|
240 |
+
|
241 |
+
def Calc_total_loss(H, B, S, num_train, args):
|
242 |
+
theta = H.mm(H.t()) / 2
|
243 |
+
t1 = (theta*theta).sum() / (num_train * num_train)
|
244 |
+
logloss = (- theta * S + Logtrick(Variable(theta)).data).sum()
|
245 |
+
regterm = (H - B).pow(2).sum()
|
246 |
+
loss_p = logloss + args.lamda * regterm
|
247 |
+
|
248 |
+
return logloss, regterm, loss_p
|
249 |
+
|
250 |
+
def CalcHammingDist(B1, B2):
|
251 |
+
q = B2.shape[1]
|
252 |
+
distH = 0.5 * (q - np.dot(B1, B2.transpose()))
|
253 |
+
return distH
|
254 |
+
|
255 |
+
def CalcMap(qB, rB, queryL, retrievalL):
|
256 |
+
# qB: m, q
|
257 |
+
# rB: n, q
|
258 |
+
# queryL: {0,1}^{mxl}
|
259 |
+
# retrievalL: {0,1}^{nxl}
|
260 |
+
num_query = queryL.shape[0]
|
261 |
+
map = 0
|
262 |
+
# print('++++++++++++++++++++++++++++++++++++++++++++++++++++++++++')
|
263 |
+
|
264 |
+
for iter in range(num_query):
|
265 |
+
# 标签匹配
|
266 |
+
gnd = (np.dot(queryL[iter, :], retrievalL.transpose()) > 0).astype(np.float32)
|
267 |
+
tsum = np.sum(gnd)
|
268 |
+
if tsum == 0:
|
269 |
+
continue
|
270 |
+
# 计算query 与 database之间的汉明距离
|
271 |
+
hamm = CalcHammingDist(qB[iter, :], rB)
|
272 |
+
# 排序
|
273 |
+
ind = np.argsort(hamm)
|
274 |
+
# 汉明距离与标签对应
|
275 |
+
gnd = gnd[ind]
|
276 |
+
count = np.linspace(1, int(tsum), int(tsum))
|
277 |
+
# 按照结果排序比对是否标签一致,并返回一致的坐标
|
278 |
+
tindex = np.asarray(np.where(gnd == 1)) + 1.0
|
279 |
+
map_ = np.mean(count / (tindex))
|
280 |
+
# print(map_)
|
281 |
+
map = map + map_
|
282 |
+
map = map / num_query
|
283 |
+
# print('++++++++++++++++++++++++++++++++++++++++++++++++++++++++++')
|
284 |
+
|
285 |
+
return map
|
286 |
+
|
287 |
+
|
288 |
+
def CalcTopMap(qB, rB, queryL, retrievalL, topk = 20):
|
289 |
+
# qB: {-1,+1}^{mxq}
|
290 |
+
# rB: {-1,+1}^{nxq}
|
291 |
+
# queryL: {0,1}^{mxl}
|
292 |
+
# retrievalL: {0,1}^{nxl}
|
293 |
+
num_query = queryL.shape[0]
|
294 |
+
topkmap = 0
|
295 |
+
# print('++++++++++++++++++++++++++++++++++++++++++++++++++++++++++')
|
296 |
+
for iter in range(num_query):
|
297 |
+
gnd = (np.dot(queryL[iter, :], retrievalL.transpose()) > 0).astype(np.float32)
|
298 |
+
hamm = CalcHammingDist(qB[iter, :], rB)
|
299 |
+
ind = np.argsort(hamm)
|
300 |
+
gnd = gnd[ind]
|
301 |
+
|
302 |
+
tgnd = gnd[0:topk]
|
303 |
+
tsum = np.sum(tgnd)
|
304 |
+
if tsum == 0:
|
305 |
+
continue
|
306 |
+
count = np.linspace(1, int(tsum), int(tsum))
|
307 |
+
|
308 |
+
tindex = np.asarray(np.where(tgnd == 1)) + 1.0
|
309 |
+
topkmap_ = np.mean(count / (tindex))
|
310 |
+
# print(topkmap_)
|
311 |
+
topkmap = topkmap + topkmap_
|
312 |
+
topkmap = topkmap / num_query
|
313 |
+
# print('++++++++++++++++++++++++++++++++++++++++++++++++++++++++++')
|
314 |
+
return topkmap
|
cisen/utils/misc.py
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from loguru import logger
|
6 |
+
import sys
|
7 |
+
import inspect
|
8 |
+
import math
|
9 |
+
import torch
|
10 |
+
import torch.distributed as dist
|
11 |
+
from collections import OrderedDict
|
12 |
+
from torch import nn
|
13 |
+
|
14 |
+
def init_random_seed(seed=None, device='cuda', rank=0, world_size=1):
|
15 |
+
"""Initialize random seed."""
|
16 |
+
if seed is not None:
|
17 |
+
return seed
|
18 |
+
|
19 |
+
# Make sure all ranks share the same random seed to prevent
|
20 |
+
# some potential bugs. Please refer to
|
21 |
+
# https://github.com/open-mmlab/mmdetection/issues/6339
|
22 |
+
seed = np.random.randint(2**31)
|
23 |
+
if world_size == 1:
|
24 |
+
return seed
|
25 |
+
|
26 |
+
if rank == 0:
|
27 |
+
random_num = torch.tensor(seed, dtype=torch.int32, device=device)
|
28 |
+
else:
|
29 |
+
random_num = torch.tensor(0, dtype=torch.int32, device=device)
|
30 |
+
dist.broadcast(random_num, src=0)
|
31 |
+
return random_num.item()
|
32 |
+
|
33 |
+
def set_random_seed(seed, deterministic=False):
|
34 |
+
"""Set random seed."""
|
35 |
+
random.seed(seed)
|
36 |
+
np.random.seed(seed)
|
37 |
+
torch.manual_seed(seed)
|
38 |
+
torch.cuda.manual_seed_all(seed)
|
39 |
+
if deterministic:
|
40 |
+
torch.backends.cudnn.deterministic = True
|
41 |
+
torch.backends.cudnn.benchmark = False
|
42 |
+
|
43 |
+
def worker_init_fn(worker_id, num_workers, rank, seed):
|
44 |
+
# The seed of each worker equals to
|
45 |
+
# num_worker * rank + worker_id + user_seed
|
46 |
+
worker_seed = num_workers * rank + worker_id + seed
|
47 |
+
np.random.seed(worker_seed)
|
48 |
+
random.seed(worker_seed)
|
49 |
+
|
50 |
+
class AverageMeter(object):
|
51 |
+
"""Computes and stores the average and current value"""
|
52 |
+
|
53 |
+
def __init__(self, name, fmt=":f"):
|
54 |
+
self.name = name
|
55 |
+
self.fmt = fmt
|
56 |
+
self.reset()
|
57 |
+
|
58 |
+
def reset(self):
|
59 |
+
self.val = 0
|
60 |
+
self.avg = 0
|
61 |
+
self.sum = 0
|
62 |
+
self.count = 0
|
63 |
+
|
64 |
+
def update(self, val, n=1):
|
65 |
+
self.val = val
|
66 |
+
self.sum += val * n
|
67 |
+
self.count += n
|
68 |
+
self.avg = self.sum / self.count
|
69 |
+
|
70 |
+
def __str__(self):
|
71 |
+
if self.name == "Lr":
|
72 |
+
fmtstr = "{name}={val" + self.fmt + "}"
|
73 |
+
else:
|
74 |
+
fmtstr = "{name}={val" + self.fmt + "} ({avg" + self.fmt + "})"
|
75 |
+
return fmtstr.format(**self.__dict__)
|
76 |
+
|
77 |
+
class ProgressMeter(object):
|
78 |
+
def __init__(self, num_batches, meters, prefix=""):
|
79 |
+
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
|
80 |
+
self.meters = meters
|
81 |
+
self.prefix = prefix
|
82 |
+
|
83 |
+
def display(self, batch):
|
84 |
+
entries = [self.prefix + self.batch_fmtstr.format(batch)]
|
85 |
+
entries += [str(meter) for meter in self.meters]
|
86 |
+
logger.info(" ".join(entries))
|
87 |
+
|
88 |
+
def _get_batch_fmtstr(self, num_batches):
|
89 |
+
num_digits = len(str(num_batches // 1))
|
90 |
+
fmt = "{:" + str(num_digits) + "d}"
|
91 |
+
return "[" + fmt + "/" + fmt.format(num_batches) + "]"
|
92 |
+
|
93 |
+
def get_caller_name(depth=0):
|
94 |
+
"""
|
95 |
+
Args:
|
96 |
+
depth (int): Depth of caller conext, use 0 for caller depth.
|
97 |
+
Default value: 0.
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
str: module name of the caller
|
101 |
+
"""
|
102 |
+
# the following logic is a little bit faster than inspect.stack() logic
|
103 |
+
frame = inspect.currentframe().f_back
|
104 |
+
for _ in range(depth):
|
105 |
+
frame = frame.f_back
|
106 |
+
|
107 |
+
return frame.f_globals["__name__"]
|
108 |
+
|
109 |
+
class StreamToLoguru:
|
110 |
+
"""
|
111 |
+
stream object that redirects writes to a logger instance.
|
112 |
+
"""
|
113 |
+
def __init__(self, level="INFO", caller_names=("apex", "pycocotools")):
|
114 |
+
"""
|
115 |
+
Args:
|
116 |
+
level(str): log level string of loguru. Default value: "INFO".
|
117 |
+
caller_names(tuple): caller names of redirected module.
|
118 |
+
Default value: (apex, pycocotools).
|
119 |
+
"""
|
120 |
+
self.level = level
|
121 |
+
self.linebuf = ""
|
122 |
+
self.caller_names = caller_names
|
123 |
+
|
124 |
+
def write(self, buf):
|
125 |
+
full_name = get_caller_name(depth=1)
|
126 |
+
module_name = full_name.rsplit(".", maxsplit=-1)[0]
|
127 |
+
if module_name in self.caller_names:
|
128 |
+
for line in buf.rstrip().splitlines():
|
129 |
+
# use caller level log
|
130 |
+
logger.opt(depth=2).log(self.level, line.rstrip())
|
131 |
+
else:
|
132 |
+
sys.__stdout__.write(buf)
|
133 |
+
|
134 |
+
def flush(self):
|
135 |
+
pass
|
136 |
+
|
137 |
+
def redirect_sys_output(log_level="INFO"):
|
138 |
+
redirect_logger = StreamToLoguru(log_level)
|
139 |
+
sys.stderr = redirect_logger
|
140 |
+
sys.stdout = redirect_logger
|
141 |
+
|
142 |
+
def setup_logger(save_dir, filename="log.txt", mode="a"):
|
143 |
+
"""setup logger for training and testing.
|
144 |
+
Args:
|
145 |
+
save_dir(str): location to save log file
|
146 |
+
distributed_rank(int): device rank when multi-gpu environment
|
147 |
+
filename (string): log save name.
|
148 |
+
mode(str): log file write mode, `append` or `override`. default is `a`.
|
149 |
+
|
150 |
+
Return:
|
151 |
+
logger instance.
|
152 |
+
"""
|
153 |
+
loguru_format = (
|
154 |
+
"<green>{time:YYYY-MM-DD HH:mm:ss}</green> | "
|
155 |
+
"<level>{level: <8}</level> | "
|
156 |
+
"<cyan>{name}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>")
|
157 |
+
|
158 |
+
logger.remove()
|
159 |
+
save_file = os.path.join(save_dir, filename)
|
160 |
+
if mode == "o" and os.path.exists(save_file):
|
161 |
+
os.remove(save_file)
|
162 |
+
# only keep logger in rank0 process
|
163 |
+
|
164 |
+
logger.add(
|
165 |
+
sys.stderr,
|
166 |
+
format=loguru_format,
|
167 |
+
level="INFO",
|
168 |
+
enqueue=True,
|
169 |
+
)
|
170 |
+
logger.add(save_file)
|
171 |
+
|
172 |
+
# redirect stdout/stderr to loguru
|
173 |
+
redirect_sys_output("INFO")
|
174 |
+
|
175 |
+
def trainMetric(pred, label):
|
176 |
+
pred = torch.argmax(pred,dim = 1)
|
177 |
+
prec = torch.sum(pred == label)
|
178 |
+
|
179 |
+
return prec
|
180 |
+
|
181 |
+
# def compute_AP(predicted_probs, true_labels):
|
182 |
+
# num_samples, num_classes = true_labels.shape
|
183 |
+
#
|
184 |
+
# # 初始化用于存储每个类别的 AP 的列表
|
185 |
+
# aps = []
|
186 |
+
#
|
187 |
+
# for class_idx in range(num_classes):
|
188 |
+
# class_true_labels = true_labels[:, class_idx]
|
189 |
+
# class_similarity_scores = predicted_probs[:, class_idx]
|
190 |
+
#
|
191 |
+
# # 获取按相似性分数排序后的样本索引
|
192 |
+
# sorted_indices = torch.argsort(class_similarity_scores, descending=True)
|
193 |
+
#
|
194 |
+
# # 计算累积精度和召回率
|
195 |
+
# tp = 0
|
196 |
+
# fp = 0
|
197 |
+
# precision_at_rank = []
|
198 |
+
# recall_at_rank = []
|
199 |
+
#
|
200 |
+
# for rank, idx in enumerate(sorted_indices):
|
201 |
+
# if class_true_labels[idx] == 1:
|
202 |
+
# tp += 1
|
203 |
+
# else:
|
204 |
+
# fp += 1
|
205 |
+
# precision = tp / (tp + fp)
|
206 |
+
# recall = tp / torch.sum(class_true_labels)
|
207 |
+
# precision_at_rank.append(precision)
|
208 |
+
# recall_at_rank.append(recall)
|
209 |
+
#
|
210 |
+
# # 计算平均精度(AP)通过计算曲线下的面积
|
211 |
+
# precision_at_rank = torch.tensor(precision_at_rank)
|
212 |
+
# recall_at_rank = torch.tensor(recall_at_rank)
|
213 |
+
# ap = torch.trapz(precision_at_rank, recall_at_rank)
|
214 |
+
#
|
215 |
+
# aps.append(ap)
|
216 |
+
#
|
217 |
+
#
|
218 |
+
# return aps
|
219 |
+
def token_wise_similarity(rep1, rep2, mask=None, chunk_size=1024):
|
220 |
+
batch_size1, n_token1, feat_dim = rep1.shape
|
221 |
+
batch_size2, n_token2, _ = rep2.shape
|
222 |
+
num_folds = math.ceil(batch_size2 / chunk_size)
|
223 |
+
output = []
|
224 |
+
for i in range(num_folds):
|
225 |
+
rep2_seg = rep2[i * chunk_size:(i + 1) * chunk_size]
|
226 |
+
out_i = rep1.reshape(-1, feat_dim) @ rep2_seg.reshape(-1, feat_dim).T
|
227 |
+
out_i = out_i.reshape(batch_size1, n_token1, -1, n_token2).max(3)[0]
|
228 |
+
if mask is None:
|
229 |
+
out_i = out_i.mean(1)
|
230 |
+
else:
|
231 |
+
out_i = out_i.sum(1)
|
232 |
+
output.append(out_i)
|
233 |
+
output = torch.cat(output, dim=1)
|
234 |
+
if mask is not None:
|
235 |
+
output = output / mask.sum(1, keepdim=True).clamp_(min=1)
|
236 |
+
return output
|
237 |
+
|
238 |
+
def compute_acc(logits, targets, topk=5):
|
239 |
+
targets = targets.squeeze(1)
|
240 |
+
p = logits.topk(topk, 1, True, True)[1]
|
241 |
+
pred = logits.topk(topk, 1, True, True)[1]
|
242 |
+
gt = targets[pred,:]
|
243 |
+
|
244 |
+
a = gt.view(1, -1)
|
245 |
+
|
246 |
+
# b = a.expand_as(pred)
|
247 |
+
c = gt.eq(targets)
|
248 |
+
correct = pred.eq(targets.view(1, -1).expand_as(pred)).contiguous()
|
249 |
+
acc_1 = correct[:1].sum(0)
|
250 |
+
acc_k = correct[:topk].sum(0)
|
251 |
+
return acc_1, acc_k
|
252 |
+
|
253 |
+
def compute_mAP(predicted_probs, true_labels):
|
254 |
+
aps = compute_AP(predicted_probs, true_labels)
|
255 |
+
aps = [ap for ap in aps if not torch.isnan(ap)]
|
256 |
+
mAP = torch.mean(torch.tensor(aps))
|
257 |
+
return mAP
|
258 |
+
|
259 |
+
def compute_F1(predictions, labels, k_val=5):
|
260 |
+
labels = labels.squeeze(1)
|
261 |
+
idx = predictions.topk(dim=1, k=k_val)[1]
|
262 |
+
predictions.fill_(0)
|
263 |
+
predictions.scatter_(dim=1, index=idx, src=torch.ones(predictions.size(0), k_val).to(predictions.device))
|
264 |
+
mask = predictions == 1
|
265 |
+
TP = (labels[mask] == 1).sum().float()
|
266 |
+
tpfp = mask.sum().float()
|
267 |
+
tpfn = (labels == 1).sum().float()
|
268 |
+
p = TP / tpfp
|
269 |
+
r = TP/tpfn
|
270 |
+
f1 = 2*p*r/(p+r)
|
271 |
+
|
272 |
+
return f1, p, r
|
273 |
+
|
274 |
+
def compute_AP(predictions, labels):
|
275 |
+
num_class = predictions.size(1)
|
276 |
+
ap = torch.zeros(num_class).to(predictions.device)
|
277 |
+
empty_class = 0
|
278 |
+
for idx_cls in range(num_class):
|
279 |
+
prediction = predictions[:, idx_cls]
|
280 |
+
label = labels[:, idx_cls]
|
281 |
+
mask = label.abs() == 1
|
282 |
+
if (label > 0).sum() == 0:
|
283 |
+
empty_class += 1
|
284 |
+
continue
|
285 |
+
binary_label = torch.clamp(label[mask], min=0, max=1)
|
286 |
+
sorted_pred, sort_idx = prediction[mask].sort(descending=True)
|
287 |
+
sorted_label = binary_label[sort_idx]
|
288 |
+
tmp = (sorted_label == 1).float()
|
289 |
+
tp = tmp.cumsum(0)
|
290 |
+
fp = (sorted_label != 1).float().cumsum(0)
|
291 |
+
num_pos = binary_label.sum()
|
292 |
+
rec = tp/num_pos
|
293 |
+
prec = tp/(tp+fp)
|
294 |
+
ap_cls = (tmp*prec).sum()/num_pos
|
295 |
+
ap[idx_cls].copy_(ap_cls)
|
296 |
+
return ap, empty_class
|
297 |
+
|
298 |
+
def compute_ACG(predictions, labels, k_val=5):
|
299 |
+
gt = labels.squeeze(1)
|
300 |
+
idx = predictions.topk(dim=1, k=k_val)[1]
|
301 |
+
pred = gt[idx, :]
|
302 |
+
pred[pred == -1] = 0
|
303 |
+
c = labels.eq(pred) # common label
|
304 |
+
r = c.sum(-1) # similarity level
|
305 |
+
# acg
|
306 |
+
acg = c.sum(-1).sum(-1) / k_val
|
307 |
+
lg = torch.log1p(torch.arange(1, k_val+1, 1) ).to(r.device)
|
308 |
+
# dcg
|
309 |
+
dcg = (torch.pow(2, r) - 1) / lg
|
310 |
+
ir, _ = r.sort(-1, descending=True)
|
311 |
+
idcg = (torch.pow(2, ir) - 1) / lg
|
312 |
+
idcg[idcg == 0] = 1e-6
|
313 |
+
ndcg = dcg.sum(-1) / idcg.sum(-1)
|
314 |
+
# map
|
315 |
+
pos = r.clone()
|
316 |
+
pos[pos != 0] = 1
|
317 |
+
j = torch.arange(1, k_val + 1, 1).to(pos.device)
|
318 |
+
P = torch.cumsum(pos, 1) / j
|
319 |
+
Npos = torch.sum(pos, 1)
|
320 |
+
Npos[Npos == 0] = 1
|
321 |
+
AP = torch.sum(P * pos, 1)
|
322 |
+
map = torch.sum(P * pos, 1) / Npos
|
323 |
+
# wmap
|
324 |
+
acgj = torch.cumsum(r, 1) / j
|
325 |
+
wmap = torch.sum(acgj * pos, 1) / Npos
|
326 |
+
|
327 |
+
|
328 |
+
|
329 |
+
return acg, ndcg, map, wmap
|
330 |
+
|
331 |
+
def compute_mAPw(predictions, labels, k_val=5):
|
332 |
+
gt = labels.squeeze(1)
|
333 |
+
idx = predictions.topk(dim=1, k=k_val)[1]
|
334 |
+
pred = gt[idx, :]
|
335 |
+
pred[pred == -1] = 0
|
336 |
+
c = labels.eq(pred)
|
337 |
+
r = c.sum(-1)
|
338 |
+
pos = r.clone()
|
339 |
+
pos[pos != 0] = 1
|
340 |
+
P = torch.cumsum(pos) / torch.arange(1, k_val+1, 1)
|
341 |
+
|
342 |
+
|
343 |
+
def adjust_learning_rate(optimizer, epoch, args):
|
344 |
+
"""Decay the learning rate with half-cycle cosine after warmup"""
|
345 |
+
if epoch < args.warmup_epochs:
|
346 |
+
lr = args.base_lr * epoch / args.warmup_epochs
|
347 |
+
else:
|
348 |
+
lr = args.min_lr + (args.base_lr - args.min_lr) * 0.5 * \
|
349 |
+
(1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs)))
|
350 |
+
for param_group in optimizer.param_groups:
|
351 |
+
if "lr_scale" in param_group:
|
352 |
+
param_group["lr"] = lr * param_group["lr_scale"]
|
353 |
+
else:
|
354 |
+
param_group["lr"] = lr
|
355 |
+
return lr
|
356 |
+
|
357 |
+
def load_ckpt(weight_dir, model, map_location, args):
|
358 |
+
checkpoint = torch.load(weight_dir, map_location=map_location)
|
359 |
+
if args.resume:
|
360 |
+
resume_epoch = checkpoint['epoch']
|
361 |
+
else:
|
362 |
+
resume_epoch = 0
|
363 |
+
pre_weight = checkpoint['state_dict']
|
364 |
+
|
365 |
+
new_pre_weight = OrderedDict()
|
366 |
+
# pre_weight =torch.jit.load(resume)
|
367 |
+
model_dict = model.state_dict()
|
368 |
+
new_model_dict = OrderedDict()
|
369 |
+
for k, v in pre_weight.items():
|
370 |
+
new_k = k.replace('module.', '') if 'module' in k else k
|
371 |
+
# 针对batch_size=1
|
372 |
+
# new_k = new_k.replace('1','2') if 'proj.1' in new_k else new_k
|
373 |
+
new_pre_weight[new_k] = v
|
374 |
+
# for k, v in model_dict.items():
|
375 |
+
# new_k = k.replace('module.', '') if 'module' in k else k
|
376 |
+
# new_model_dict[new_k] = v
|
377 |
+
pre_weight = new_pre_weight # ["model_state"]
|
378 |
+
# pretrained_dict = {}
|
379 |
+
# t_n = 0
|
380 |
+
# v_n = 0
|
381 |
+
# for k, v in pre_weight.items():
|
382 |
+
# t_n += 1
|
383 |
+
# if k in new_model_dict:
|
384 |
+
# k = 'module.' + k if 'module' not in k else k
|
385 |
+
# v_n += 1
|
386 |
+
# pretrained_dict[k] = v
|
387 |
+
# print(k)
|
388 |
+
# os._exit()
|
389 |
+
# print(f'{v_n}/{t_n} weights have been loaded!')
|
390 |
+
model_dict.update(pre_weight)
|
391 |
+
model.load_state_dict(model_dict, strict=False)
|
392 |
+
|
393 |
+
return model, resume_epoch
|
394 |
+
|
395 |
+
def load_ckpt_fpn(weight_dir, model, map_location):
|
396 |
+
|
397 |
+
pre_weight = torch.load(weight_dir, map_location=map_location)['state_dict']
|
398 |
+
epoch = torch.load(weight_dir, map_location=map_location)['epoch']
|
399 |
+
new_pre_weight = OrderedDict()
|
400 |
+
# pre_weight =torch.jit.load(resume)
|
401 |
+
model_dict = model.state_dict()
|
402 |
+
|
403 |
+
for k, v in pre_weight.items():
|
404 |
+
new_k = k.replace('module.', '') if 'module' in k else k
|
405 |
+
# if not (new_k.startswith('FPN') or new_k.startswith('gap')):
|
406 |
+
new_pre_weight[new_k] = v
|
407 |
+
|
408 |
+
pre_weight = new_pre_weight
|
409 |
+
# ["model_state"]
|
410 |
+
model_dict.update(pre_weight)
|
411 |
+
model.load_state_dict(model_dict, strict=True)
|
412 |
+
|
413 |
+
return model, epoch
|
414 |
+
def load_ckpt_old(weight_dir, model, map_location):
|
415 |
+
|
416 |
+
pre_weight = torch.load(weight_dir, map_location=map_location)['state_dict']
|
417 |
+
epoch = torch.load(weight_dir, map_location=map_location)['epoch']
|
418 |
+
new_pre_weight = OrderedDict()
|
419 |
+
# pre_weight =torch.jit.load(resume)
|
420 |
+
model_dict = model.state_dict()
|
421 |
+
|
422 |
+
for k, v in pre_weight.items():
|
423 |
+
new_k = k.replace('module.', '') if 'module' in k else k
|
424 |
+
if not (new_k.startswith('FPN') or new_k.startswith('gap')):
|
425 |
+
new_pre_weight[new_k] = v
|
426 |
+
|
427 |
+
pre_weight = new_pre_weight
|
428 |
+
# ["model_state"]
|
429 |
+
model_dict.update(pre_weight)
|
430 |
+
model.load_state_dict(model_dict, strict=False)
|
431 |
+
|
432 |
+
return model, epoch
|
433 |
+
|
434 |
+
def compare_ckpt(model1, model2):
|
435 |
+
V = dict()
|
436 |
+
for k, v in model1.items():
|
437 |
+
if k.startswith('projT'):
|
438 |
+
V[k] = v
|
439 |
+
|
440 |
+
for k, v in model2.items():
|
441 |
+
if k in sorted(V.keys()):
|
442 |
+
model2[k] = V[k]
|
443 |
+
|
444 |
+
return model2
|
cisen/utils/simple_tokenizer.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import html
|
3 |
+
import os
|
4 |
+
from functools import lru_cache
|
5 |
+
|
6 |
+
import ftfy
|
7 |
+
import regex as re
|
8 |
+
|
9 |
+
|
10 |
+
@lru_cache()
|
11 |
+
def default_bpe():
|
12 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
13 |
+
|
14 |
+
|
15 |
+
@lru_cache()
|
16 |
+
def bytes_to_unicode():
|
17 |
+
"""
|
18 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
19 |
+
The reversible bpe codes work on unicode strings.
|
20 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
21 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
22 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
23 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
24 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
25 |
+
"""
|
26 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
27 |
+
cs = bs[:]
|
28 |
+
n = 0
|
29 |
+
for b in range(2**8):
|
30 |
+
if b not in bs:
|
31 |
+
bs.append(b)
|
32 |
+
cs.append(2**8+n)
|
33 |
+
n += 1
|
34 |
+
cs = [chr(n) for n in cs]
|
35 |
+
return dict(zip(bs, cs))
|
36 |
+
|
37 |
+
|
38 |
+
def get_pairs(word):
|
39 |
+
"""Return set of symbol pairs in a word.
|
40 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
41 |
+
"""
|
42 |
+
pairs = set()
|
43 |
+
prev_char = word[0]
|
44 |
+
for char in word[1:]:
|
45 |
+
pairs.add((prev_char, char))
|
46 |
+
prev_char = char
|
47 |
+
return pairs
|
48 |
+
|
49 |
+
|
50 |
+
def basic_clean(text):
|
51 |
+
text = ftfy.fix_text(text)
|
52 |
+
text = html.unescape(html.unescape(text))
|
53 |
+
return text.strip()
|
54 |
+
|
55 |
+
|
56 |
+
def whitespace_clean(text):
|
57 |
+
text = re.sub(r'\s+', ' ', text)
|
58 |
+
text = text.strip()
|
59 |
+
return text
|
60 |
+
|
61 |
+
|
62 |
+
class SimpleTokenizer(object):
|
63 |
+
def __init__(self, bpe_path: str = default_bpe()):
|
64 |
+
self.byte_encoder = bytes_to_unicode()
|
65 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
66 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
67 |
+
merges = merges[1:49152-256-2+1]
|
68 |
+
merges = [tuple(merge.split()) for merge in merges]
|
69 |
+
vocab = list(bytes_to_unicode().values())
|
70 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
71 |
+
for merge in merges:
|
72 |
+
vocab.append(''.join(merge))
|
73 |
+
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
|
74 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
75 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
76 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
77 |
+
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
|
78 |
+
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
79 |
+
|
80 |
+
def bpe(self, token):
|
81 |
+
if token in self.cache:
|
82 |
+
return self.cache[token]
|
83 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
84 |
+
pairs = get_pairs(word)
|
85 |
+
|
86 |
+
if not pairs:
|
87 |
+
return token+'</w>'
|
88 |
+
|
89 |
+
while True:
|
90 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
91 |
+
if bigram not in self.bpe_ranks:
|
92 |
+
break
|
93 |
+
first, second = bigram
|
94 |
+
new_word = []
|
95 |
+
i = 0
|
96 |
+
while i < len(word):
|
97 |
+
try:
|
98 |
+
j = word.index(first, i)
|
99 |
+
new_word.extend(word[i:j])
|
100 |
+
i = j
|
101 |
+
except:
|
102 |
+
new_word.extend(word[i:])
|
103 |
+
break
|
104 |
+
|
105 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
106 |
+
new_word.append(first+second)
|
107 |
+
i += 2
|
108 |
+
else:
|
109 |
+
new_word.append(word[i])
|
110 |
+
i += 1
|
111 |
+
new_word = tuple(new_word)
|
112 |
+
word = new_word
|
113 |
+
if len(word) == 1:
|
114 |
+
break
|
115 |
+
else:
|
116 |
+
pairs = get_pairs(word)
|
117 |
+
word = ' '.join(word)
|
118 |
+
self.cache[token] = word
|
119 |
+
return word
|
120 |
+
|
121 |
+
def encode(self, text):
|
122 |
+
bpe_tokens = []
|
123 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
124 |
+
for token in re.findall(self.pat, text):
|
125 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
126 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
127 |
+
return bpe_tokens
|
128 |
+
|
129 |
+
def decode(self, tokens):
|
130 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
131 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
132 |
+
return text
|
cisen_r0.9_fpn.yaml
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DATA:
|
2 |
+
dataset: classification
|
3 |
+
dataset_json_file: /data02/xy/dataEngine/json_data/LuojiaHOG(test)_.json
|
4 |
+
# dataset_json_file: /data02/xy/dataEngine/json_data/merged_output_combined_9w_resplit.json
|
5 |
+
# dataset_json_file: /data02/xy/dataEngine/json_data/merged_output_combined_9w_resplit.json
|
6 |
+
exp_name: classifi
|
7 |
+
ratio: 0
|
8 |
+
dataset_train_split: 0.6
|
9 |
+
dataset_query_split: 0.2
|
10 |
+
imgs_folder: /data02/xy/Clip-hash/datasets/image/
|
11 |
+
label_path: /data02/xy/Clip-hash/labels.txt
|
12 |
+
num_classes: 10
|
13 |
+
# num_classes: 131
|
14 |
+
TRAIN:
|
15 |
+
# Base Arch
|
16 |
+
# clip_pretrain: /data02/xy/Clip-hash/pretrain/RS5M_ViT-B-32.pt
|
17 |
+
clip_pretrain: ./cisen/pretrain/RS5M_ViT-B-32.pt
|
18 |
+
model_name: ViT-B-32
|
19 |
+
ckpt_path: /data02/xy/GeoRSCLIP/codebase/inference/pretrain/RS5M_ViT-B-32.pt
|
20 |
+
input_size: 224
|
21 |
+
word_len: 328
|
22 |
+
word_dim: 1024
|
23 |
+
vis_dim: 512
|
24 |
+
fpn_in: [ 512, 768, 768 ]
|
25 |
+
fpn_out: [ 768, 768, 768, 512 ]
|
26 |
+
sync_bn: True
|
27 |
+
# Decoder
|
28 |
+
num_layers: 3
|
29 |
+
num_head: 8
|
30 |
+
dim_ffn: 2048
|
31 |
+
dropout: 0.1
|
32 |
+
intermediate: False
|
33 |
+
# Training Setting
|
34 |
+
workers: 32 # data loader workers
|
35 |
+
workers_val: 16
|
36 |
+
epochs: 50
|
37 |
+
milestones: [50]
|
38 |
+
start_epoch: 0
|
39 |
+
batch_size: 256 # batch size for training
|
40 |
+
batch_size_val: 256 # batch size for validation during training, memory and speed tradeoff 11111
|
41 |
+
base_lr: 0.0001
|
42 |
+
min_lr: 0.00000001
|
43 |
+
lr_decay: 0.5
|
44 |
+
lr_multi: 0.1
|
45 |
+
weight_decay: 0.
|
46 |
+
max_norm: 0.
|
47 |
+
manual_seed: 0
|
48 |
+
print_freq: 1
|
49 |
+
lamda1: 0.5
|
50 |
+
lamda2: 0.5
|
51 |
+
beta1: 0.5
|
52 |
+
beta2: 0.5
|
53 |
+
eta: 0.2
|
54 |
+
warmup_epochs: 0
|
55 |
+
contrastive: [0.4, 0.3, 0.3]
|
56 |
+
# Resume & Save
|
57 |
+
|
58 |
+
output_folder: /data02/xy/Clip-hash/exp/
|
59 |
+
save_freq: 1
|
60 |
+
weight: # path to initial weight (default: none)
|
61 |
+
resume: False # path to latest checkpoint (default: none)
|
62 |
+
evaluate: True # evaluate on validation set, extra gpu memory needed and small batch_size_val is recommend
|
63 |
+
Distributed:
|
64 |
+
dist_url: tcp://localhost:3693
|
65 |
+
dist_backend: 'nccl'
|
66 |
+
multiprocessing_distributed: True
|
67 |
+
world_size: 1
|
68 |
+
rank: 0
|
69 |
+
TEST:
|
70 |
+
test_split: val-test
|
71 |
+
gpu : [0]
|
72 |
+
test_lmdb: /data02/xy/Clip-hash/datasets/lmdb/refcoco/val.lmdb
|
73 |
+
visualize: False
|
74 |
+
topk: 5
|
75 |
+
test_batch_size: 256 #1111111
|
76 |
+
val_batch_size: 1
|
example_image/sample16_98.jpg
ADDED
example_image/sample21_1524.jpg
ADDED
example_image/sample21_2180.jpg
ADDED
example_image/sample21_2392.jpg
ADDED
example_image/sample21_2593.jpg
ADDED
example_image/sample32_1642.jpg
ADDED
example_image/sample40_1027.jpg
ADDED
example_image/sample40_2483.jpg
ADDED
example_image/sample42_2609.jpg
ADDED
example_image/sample44_1090.jpg
ADDED
example_image/sample44_1592.jpg
ADDED
example_image/sample44_2048.jpg
ADDED
example_image/sample52_812.jpg
ADDED
example_image/sample57_1854.jpg
ADDED
example_image/sample57_268.jpg
ADDED
get_data_by_image_id.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
from torchvision import transforms
|
6 |
+
|
7 |
+
|
8 |
+
def read_json(file_name, suppress_console_info=False):
|
9 |
+
with open(file_name, 'r') as f:
|
10 |
+
data = json.load(f)
|
11 |
+
if not suppress_console_info:
|
12 |
+
print("Read from:", file_name)
|
13 |
+
return data
|
14 |
+
|
15 |
+
def get_file_names(data, imgs_folder, feature_folder, suppress_console_info=False):
|
16 |
+
|
17 |
+
image_file_names = {}
|
18 |
+
feature_pathes = {}
|
19 |
+
captions = {}
|
20 |
+
labels = {}
|
21 |
+
lats = {}
|
22 |
+
lons = {}
|
23 |
+
|
24 |
+
for img in data['images']:
|
25 |
+
image_name = img["image_name"]
|
26 |
+
sample_id = img["sample_id"]
|
27 |
+
image_id = f'{sample_id}_{image_name}'
|
28 |
+
path_data = imgs_folder + f'{sample_id}/{image_name}'
|
29 |
+
feature_data = feature_folder + f'{sample_id}/{image_name}.npy'
|
30 |
+
# image_file_name.append(path_data)
|
31 |
+
# caption.append(img["description"])
|
32 |
+
# label.append(img["labels"])
|
33 |
+
# lat.append(img["lat"])
|
34 |
+
# lon.append(img["lon"])
|
35 |
+
|
36 |
+
image_file_names[image_id] = path_data
|
37 |
+
feature_pathes[image_id] = feature_data
|
38 |
+
captions[image_id] = img["description"]
|
39 |
+
labels[image_id] = img["labels"]
|
40 |
+
lats[image_id] = img["lat"]
|
41 |
+
lons[image_id] = img["lon"]
|
42 |
+
|
43 |
+
return image_file_names, feature_pathes, captions, labels, lats, lons
|
44 |
+
|
45 |
+
|
46 |
+
def get_data(image_file_names, captions, feature_pathes, labels, lats, lons, image_id):
|
47 |
+
|
48 |
+
image_file_name = image_file_names[image_id]
|
49 |
+
feature_path = feature_pathes[image_id]
|
50 |
+
caption = captions[image_id]
|
51 |
+
label = labels[image_id]
|
52 |
+
lat = lats[image_id]
|
53 |
+
lon = lons[image_id]
|
54 |
+
|
55 |
+
return image_file_name, feature_path, caption, label, lat, lon
|
56 |
+
|
57 |
+
|
58 |
+
def read_by_image_id(data_dir, imgs_folder, feature_folder, image_id=None):
|
59 |
+
'''
|
60 |
+
return:
|
61 |
+
img
|
62 |
+
img_ -> transform(img)
|
63 |
+
caption
|
64 |
+
image_feature -> tensor
|
65 |
+
label
|
66 |
+
label_en -> text of labels
|
67 |
+
lat
|
68 |
+
lon
|
69 |
+
'''
|
70 |
+
|
71 |
+
data_info = read_json(data_dir)
|
72 |
+
image_file_names, image_features_path, captions, labels, lats, lons = get_file_names(data_info, imgs_folder, feature_folder)
|
73 |
+
|
74 |
+
image_file_name, image_feature_path, caption, label, lat, lon = get_data(image_file_names, captions, image_features_path, labels, lats, lons, image_id)
|
75 |
+
|
76 |
+
label_en = []
|
77 |
+
label131 = data_info['labels']
|
78 |
+
|
79 |
+
for lable_name in label131.keys():
|
80 |
+
label_id = label131[lable_name]
|
81 |
+
for label_singel in label:
|
82 |
+
if label_singel == label_id:
|
83 |
+
label_en.append(lable_name)
|
84 |
+
image_feature = np.load(image_feature_path)
|
85 |
+
|
86 |
+
img = Image.open(image_file_name).convert('RGB')
|
87 |
+
|
88 |
+
transform = transforms.Compose([
|
89 |
+
transforms.Resize(224),
|
90 |
+
transforms.CenterCrop(224),
|
91 |
+
transforms.ToTensor(),
|
92 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
93 |
+
])
|
94 |
+
|
95 |
+
if transform is not None:
|
96 |
+
img_ = np.array(transform(img))
|
97 |
+
else:
|
98 |
+
img_ = np.array(img)
|
99 |
+
img_ = torch.from_numpy(img_.astype('float32'))
|
100 |
+
|
101 |
+
return img, img_, caption, image_feature, label, label_en, lat, lon
|
102 |
+
|
103 |
+
|
104 |
+
# test
|
105 |
+
data_dir = '/data02/xy/dataEngine/json_data/merged_output_combined_9w_resplit.json'
|
106 |
+
imgs_folder = '/data02/xy/Clip-hash//datasets/image/'
|
107 |
+
feature_folder = '/data02/xy/Clip-hash/image_feature/georsclip_21_r0.9_fpn/'
|
108 |
+
image_id = 'sample44_889.jpg'
|
109 |
+
|
110 |
+
# img, img_, caption, image_feature, label, label_en, lat, lon = read_by_image_id(data_dir, imgs_folder, feature_folder, image_id)
|
111 |
+
# print(img, img_, caption, image_feature, label, label_en, lat, lon)
|
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets==2.19.0
|
2 |
+
einops==0.8.0
|
3 |
+
faiss-cpu
|
4 |
+
ftfy==6.2.0
|
5 |
+
gradio==4.29.0
|
6 |
+
huggingface_hub==0.23.0
|
7 |
+
loguru==0.7.2
|
8 |
+
mmcv==2.2.0
|
9 |
+
numpy==1.24.4
|
10 |
+
pandas==2.0.3
|
11 |
+
Pillow==9.1.0
|
12 |
+
PyYAML==6.0
|
13 |
+
regex==2024.4.28
|
14 |
+
scikit_learn==1.3.2
|
15 |
+
timm==0.9.16
|
16 |
+
torch==1.11.0
|
17 |
+
torchvision==0.12.0
|
18 |
+
tqdm==4.66.4
|
19 |
+
transformers==4.40.1
|
20 |
+
usearch==2.12.0
|