|
import json |
|
import os, sys |
|
import time |
|
import re |
|
from pathlib import Path |
|
from typing import List, Literal, Optional, Tuple, TypedDict, Dict |
|
|
|
|
|
prj_root_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
sys.path.append(prj_root_path) |
|
from code_interpreter.JuypyterClient import JupyterNotebook |
|
from code_interpreter.BaseCodeInterpreter import BaseCodeInterpreter |
|
from utils.const import * |
|
from colorama import init, Fore, Style |
|
from rich.markdown import Markdown |
|
import base64 |
|
|
|
import openai |
|
from retrying import retry |
|
import logging |
|
from termcolor import colored |
|
|
|
|
|
with open("./openai_api_key.txt") as f: |
|
OPENAI_API_KEY = key = f.read() |
|
openai.api_key = OPENAI_API_KEY |
|
from utils.cleaner import clean_error_msg |
|
from prompt.gpt4_prompt import * |
|
|
|
|
|
def remove_string(s): |
|
pattern = r"\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}\.\d{6}:.*LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64\n" |
|
return re.sub(pattern, "", s) |
|
|
|
|
|
def gen_questions(prefix="What is 55th fibonacci number?"): |
|
response = openai.ChatCompletion.create( |
|
model="gpt-4", |
|
messages=[ |
|
{ |
|
"role": "system", |
|
"content": "You are teacherGPT, You need to generate only questions(to student not the explanation and solution) based on student history. \n\nGive him only one question.\n\nAlso remember that student can use code. ", |
|
}, |
|
{ |
|
"role": "user", |
|
"content": f"{prefix}\nmore harder one but not the similar domain of above.", |
|
}, |
|
], |
|
temperature=0.1, |
|
max_tokens=300, |
|
top_p=1, |
|
frequency_penalty=0, |
|
presence_penalty=0, |
|
) |
|
return response["choices"][0]["message"]["content"] |
|
|
|
|
|
def save_dialog(dialog, base_path: str = f"{prj_root_path}/gpt_data_gen"): |
|
file_number = 0 |
|
while True: |
|
|
|
file_name = f"{file_number}.json" |
|
full_path = os.path.join(base_path, file_name) |
|
|
|
|
|
if not os.path.exists(full_path): |
|
|
|
with open(full_path, "w") as f: |
|
json.dump(dialog, f) |
|
print(f"Dialog saved to {full_path}") |
|
break |
|
else: |
|
|
|
file_number += 1 |
|
|
|
|
|
def clean_the_dialog(dialog, question): |
|
question_idx = 0 |
|
for idx, item in enumerate(dialog): |
|
if item["content"] == question: |
|
question_idx = idx |
|
|
|
filtered_dialog = dialog[question_idx:] |
|
|
|
user_qinit_dict = filtered_dialog[0] |
|
answer_fuse_str = "\n".join([i["content"].strip() for i in filtered_dialog[1::2]]) |
|
|
|
final_dialog_dict = [ |
|
{"role": "user", "content": user_qinit_dict["content"]}, |
|
{"role": "assistant", "content": answer_fuse_str}, |
|
] |
|
|
|
return final_dialog_dict |
|
|
|
|
|
class GPTCodeInterpreter(BaseCodeInterpreter): |
|
def __init__(self, model="gpt-4"): |
|
self.model = model |
|
self.dialog = [ |
|
|
|
{ |
|
"role": "system", |
|
"content": CODE_INTERPRETER_SYSTEM_PROMPT + "\n" + extra_prompt, |
|
}, |
|
|
|
|
|
] |
|
|
|
self.dialog += few_shot_1 |
|
|
|
self.response = None |
|
|
|
assert os.path.isfile( |
|
"./openai_api_key.txt" |
|
), "The openai_api_key.txt file could not be found. Please make sure it is in the same directory as this script, and that it contains your OpenAI API key." |
|
|
|
|
|
with open("./openai_api_key.txt") as f: |
|
OPENAI_API_KEY = f.read() |
|
openai.api_key = OPENAI_API_KEY |
|
|
|
self.nb = JupyterNotebook() |
|
out = self.nb.add_and_run(TOOLS_CODE) |
|
|
|
def get_response_content(self): |
|
if self.response: |
|
return self.response["choices"][0]["message"]["content"] |
|
else: |
|
return None |
|
|
|
@retry( |
|
stop_max_attempt_number=7, |
|
wait_exponential_multiplier=1000, |
|
wait_exponential_max=10000, |
|
) |
|
def ChatCompletion(self): |
|
try: |
|
self.response = openai.ChatCompletion.create( |
|
model=self.model, messages=self.dialog, temperature=0.1, top_p=1.0 |
|
) |
|
except Exception as e: |
|
print(f"error while OPENAI api call {e}") |
|
|
|
def chat(self, user_message: str, VERBOSE: bool = False, MAX_RETRY: int = 6): |
|
self.dialog.append({"role": "user", "content": user_message}) |
|
|
|
code_block_output = "" |
|
attempt = 0 |
|
img_data = None |
|
|
|
if VERBOSE: |
|
print( |
|
"###User : " + Fore.BLUE + Style.BRIGHT + user_message + Style.RESET_ALL |
|
) |
|
print("\n###Assistant : ") |
|
|
|
for i in range(MAX_RETRY): |
|
|
|
self.ChatCompletion() |
|
|
|
|
|
generated_text = self.get_response_content() |
|
generated_code_blocks = self.extract_code_blocks(generated_text) |
|
|
|
if len(generated_code_blocks) > 0: |
|
|
|
first_code_block_pos = ( |
|
generated_text.find(generated_code_blocks[0]) |
|
if generated_code_blocks |
|
else -1 |
|
) |
|
text_before_first_code_block = ( |
|
generated_text |
|
if first_code_block_pos == -1 |
|
else generated_text[:first_code_block_pos] |
|
) |
|
if VERBOSE: |
|
print(Fore.GREEN + text_before_first_code_block + Style.RESET_ALL) |
|
if VERBOSE: |
|
print( |
|
Fore.YELLOW |
|
+ generated_code_blocks[0] |
|
+ "\n```\n" |
|
+ Style.RESET_ALL |
|
) |
|
code_block_output, error_flag = self.execute_code_and_return_output( |
|
generated_code_blocks[0] |
|
) |
|
|
|
code_block_output = f"{code_block_output}" |
|
|
|
if code_block_output is not None: |
|
code_block_output = code_block_output.strip() |
|
|
|
code_block_output = remove_string(code_block_output) |
|
if len(code_block_output) > 500: |
|
code_block_output = ( |
|
code_block_output[:200] + "⋯(skip)⋯" + code_block_output[-200:] |
|
) |
|
code_block_output_str = f"\n```RESULT\n{code_block_output}\n```\n" |
|
if VERBOSE: |
|
print(Fore.LIGHTBLACK_EX + code_block_output_str + Style.RESET_ALL) |
|
|
|
|
|
gen_final = f"{text_before_first_code_block}{generated_code_blocks[0]}\n```{code_block_output_str}" |
|
|
|
self.dialog.append( |
|
{ |
|
"role": "assistant", |
|
"content": f"{text_before_first_code_block}{generated_code_blocks[0]}\n```{code_block_output_str}", |
|
} |
|
) |
|
|
|
self.dialog.append( |
|
{ |
|
"role": "user", |
|
"content": "Keep going. if you think debugging generate code. need conclusion to question only text (Do not leave result part alone). Doesn't need to generated anything then just say <done>", |
|
} |
|
) |
|
|
|
else: |
|
if "<done>" in generated_text: |
|
generated_text = generated_text.split("<done>")[0].strip() |
|
|
|
if len(generated_text) <= 0: |
|
break |
|
|
|
if VERBOSE: |
|
print(Fore.GREEN + generated_text + Style.RESET_ALL) |
|
|
|
self.dialog.append( |
|
{ |
|
"role": "assistant", |
|
"content": f"{generated_text}", |
|
} |
|
) |
|
break |
|
|
|
return self.dialog[-1] |
|
|
|
|
|
if __name__ == "__main__": |
|
import random |
|
|
|
SEED_TASK = [ |
|
|
|
"Write a Python script that retrieves Google Trends data for a given keyword and stock price data for a specific company over the same timeframe, normalizes both datasets to the same scale, and then plots them on the same graph to analyze potential correlations.", |
|
"Could you conduct a frequency analysis on Apple's stock price to determine any cyclic patterns that occur on a weekly, monthly, or quarterly basis?", |
|
] |
|
|
|
questions = SEED_TASK |
|
|
|
from tqdm import tqdm |
|
|
|
for i in tqdm(range(150000)): |
|
interpreter = GPTCodeInterpreter() |
|
|
|
question = questions[i] |
|
output = interpreter.chat(user_message=question, VERBOSE=True, MAX_RETRY=5) |
|
|
|
sample = clean_the_dialog(interpreter.dialog, question) |
|
|
|
save_dialog(sample) |
|
|
|
|
|
|
|
|
|
|
|
del interpreter |
|
|
|
print(f"new question :: {question}") |
|
|