Spaces:
Runtime error
Runtime error
import time | |
import torch | |
import string | |
from espnet_model_zoo.downloader import ModelDownloader | |
from espnet2.bin.asr_inference import Speech2Text | |
import soundfile | |
import librosa.display | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
d = ModelDownloader() | |
speech2text = Speech2Text( | |
**d.download_and_unpack(tag), | |
device="cpu", | |
minlenratio=0.0, | |
maxlenratio=0.0, | |
ctc_weight=0.3, | |
beam_size=10, | |
batch_size=0, | |
nbest=1 | |
) | |
def text_normalizer(text): | |
text = text.upper() | |
return text.translate(str.maketrans('', '', string.punctuation)) | |
lang = 'multilingual' | |
fs = 16000 | |
tag = 'ftshijt/open_li52_asr_train_asr_raw_bpe7000_valid.acc.ave_10best' | |
def inference(audio): | |
speech, rate = soundfile.read(audio.name) | |
assert rate == fs, "mismatch in sampling rate" | |
nbests = speech2text(speech) | |
text, *_ = nbests[0] | |
print(f"Input Speech: {file_name}") | |
return f"ASR hypothesis: {text_normalizer(text)}" | |
inputs = gr.inputs.Audio(label="Input Audio", type="file") | |
outputs = gr.outputs.Textbox(label="Output Text") | |
title = "wav2vec 2.0" | |
description = "demo for Facebook AI wav2vec 2.0 using Hugging Face transformers. To use it, simply upload your audio, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2006.11477'>wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations</a> | <a href='https://github.com/pytorch/fairseq'>Github Repo</a> | <a href='https://huggingface.co/facebook/wav2vec2-base-960h'>Hugging Face model</a></p>" | |
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article).launch() | |