akhaliq3
spaces demo
5019931
raw
history blame contribute delete
No virus
6.5 kB
from typing import List, NoReturn
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def init_embedding(layer: nn.Module) -> NoReturn:
r"""Initialize a Linear or Convolutional layer."""
nn.init.uniform_(layer.weight, -1.0, 1.0)
if hasattr(layer, 'bias'):
if layer.bias is not None:
layer.bias.data.fill_(0.0)
def init_layer(layer: nn.Module) -> NoReturn:
r"""Initialize a Linear or Convolutional layer."""
nn.init.xavier_uniform_(layer.weight)
if hasattr(layer, "bias"):
if layer.bias is not None:
layer.bias.data.fill_(0.0)
def init_bn(bn: nn.Module) -> NoReturn:
r"""Initialize a Batchnorm layer."""
bn.bias.data.fill_(0.0)
bn.weight.data.fill_(1.0)
bn.running_mean.data.fill_(0.0)
bn.running_var.data.fill_(1.0)
def act(x: torch.Tensor, activation: str) -> torch.Tensor:
if activation == "relu":
return F.relu_(x)
elif activation == "leaky_relu":
return F.leaky_relu_(x, negative_slope=0.01)
elif activation == "swish":
return x * torch.sigmoid(x)
else:
raise Exception("Incorrect activation!")
class Base:
def __init__(self):
r"""Base function for extracting spectrogram, cos, and sin, etc."""
pass
def spectrogram(self, input: torch.Tensor, eps: float = 0.0) -> torch.Tensor:
r"""Calculate spectrogram.
Args:
input: (batch_size, segments_num)
eps: float
Returns:
spectrogram: (batch_size, time_steps, freq_bins)
"""
(real, imag) = self.stft(input)
return torch.clamp(real ** 2 + imag ** 2, eps, np.inf) ** 0.5
def spectrogram_phase(
self, input: torch.Tensor, eps: float = 0.0
) -> List[torch.Tensor]:
r"""Calculate the magnitude, cos, and sin of the STFT of input.
Args:
input: (batch_size, segments_num)
eps: float
Returns:
mag: (batch_size, time_steps, freq_bins)
cos: (batch_size, time_steps, freq_bins)
sin: (batch_size, time_steps, freq_bins)
"""
(real, imag) = self.stft(input)
mag = torch.clamp(real ** 2 + imag ** 2, eps, np.inf) ** 0.5
cos = real / mag
sin = imag / mag
return mag, cos, sin
def wav_to_spectrogram_phase(
self, input: torch.Tensor, eps: float = 1e-10
) -> List[torch.Tensor]:
r"""Convert waveforms to magnitude, cos, and sin of STFT.
Args:
input: (batch_size, channels_num, segment_samples)
eps: float
Outputs:
mag: (batch_size, channels_num, time_steps, freq_bins)
cos: (batch_size, channels_num, time_steps, freq_bins)
sin: (batch_size, channels_num, time_steps, freq_bins)
"""
batch_size, channels_num, segment_samples = input.shape
# Reshape input with shapes of (n, segments_num) to meet the
# requirements of the stft function.
x = input.reshape(batch_size * channels_num, segment_samples)
mag, cos, sin = self.spectrogram_phase(x, eps=eps)
# mag, cos, sin: (batch_size * channels_num, 1, time_steps, freq_bins)
_, _, time_steps, freq_bins = mag.shape
mag = mag.reshape(batch_size, channels_num, time_steps, freq_bins)
cos = cos.reshape(batch_size, channels_num, time_steps, freq_bins)
sin = sin.reshape(batch_size, channels_num, time_steps, freq_bins)
return mag, cos, sin
def wav_to_spectrogram(
self, input: torch.Tensor, eps: float = 1e-10
) -> List[torch.Tensor]:
mag, cos, sin = self.wav_to_spectrogram_phase(input, eps)
return mag
class Subband:
def __init__(self, subbands_num: int):
r"""Warning!! This class is not used!!
This class does not work as good as [1] which split subbands in the
time-domain. Please refere to [1] for formal implementation.
[1] Liu, Haohe, et al. "Channel-wise subband input for better voice and
accompaniment separation on high resolution music." arXiv preprint arXiv:2008.05216 (2020).
Args:
subbands_num: int, e.g., 4
"""
self.subbands_num = subbands_num
def analysis(self, x: torch.Tensor) -> torch.Tensor:
r"""Analysis time-frequency representation into subbands. Stack the
subbands along the channel axis.
Args:
x: (batch_size, channels_num, time_steps, freq_bins)
Returns:
output: (batch_size, channels_num * subbands_num, time_steps, freq_bins // subbands_num)
"""
batch_size, channels_num, time_steps, freq_bins = x.shape
x = x.reshape(
batch_size,
channels_num,
time_steps,
self.subbands_num,
freq_bins // self.subbands_num,
)
# x: (batch_size, channels_num, time_steps, subbands_num, freq_bins // subbands_num)
x = x.transpose(2, 3)
output = x.reshape(
batch_size,
channels_num * self.subbands_num,
time_steps,
freq_bins // self.subbands_num,
)
# output: (batch_size, channels_num * subbands_num, time_steps, freq_bins // subbands_num)
return output
def synthesis(self, x: torch.Tensor) -> torch.Tensor:
r"""Synthesis subband time-frequency representations into original
time-frequency representation.
Args:
x: (batch_size, channels_num * subbands_num, time_steps, freq_bins // subbands_num)
Returns:
output: (batch_size, channels_num, time_steps, freq_bins)
"""
batch_size, subband_channels_num, time_steps, subband_freq_bins = x.shape
channels_num = subband_channels_num // self.subbands_num
freq_bins = subband_freq_bins * self.subbands_num
x = x.reshape(
batch_size,
channels_num,
self.subbands_num,
time_steps,
subband_freq_bins,
)
# x: (batch_size, channels_num, subbands_num, time_steps, freq_bins // subbands_num)
x = x.transpose(2, 3)
# x: (batch_size, channels_num, time_steps, subbands_num, freq_bins // subbands_num)
output = x.reshape(batch_size, channels_num, time_steps, freq_bins)
# x: (batch_size, channels_num, time_steps, freq_bins)
return output