Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
| """ | |
| MaskFormer Training Script. | |
| This script is a simplified version of the training script in detectron2/tools. | |
| """ | |
| try: | |
| # ignore ShapelyDeprecationWarning from fvcore | |
| from shapely.errors import ShapelyDeprecationWarning | |
| import warnings | |
| warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning) | |
| except: | |
| pass | |
| import copy | |
| import itertools | |
| import logging | |
| import os | |
| from collections import OrderedDict | |
| from typing import Any, Dict, List, Set | |
| import torch | |
| import detectron2.utils.comm as comm | |
| from detectron2.checkpoint import DetectionCheckpointer | |
| from detectron2.config import get_cfg | |
| from detectron2.data import MetadataCatalog | |
| from detectron2.engine import ( | |
| DefaultTrainer, | |
| default_argument_parser, | |
| default_setup, | |
| launch, | |
| ) | |
| from detectron2.evaluation import ( | |
| DatasetEvaluator, | |
| inference_on_dataset, | |
| print_csv_format, | |
| verify_results, | |
| ) | |
| from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler | |
| from detectron2.solver.build import maybe_add_gradient_clipping | |
| from detectron2.utils.logger import setup_logger | |
| # MaskFormer | |
| from mask2former import add_maskformer2_config | |
| from mask2former_video import ( | |
| YTVISDatasetMapper, | |
| YTVISEvaluator, | |
| add_maskformer2_video_config, | |
| build_detection_train_loader, | |
| build_detection_test_loader, | |
| get_detection_dataset_dicts, | |
| ) | |
| class Trainer(DefaultTrainer): | |
| """ | |
| Extension of the Trainer class adapted to MaskFormer. | |
| """ | |
| def build_evaluator(cls, cfg, dataset_name, output_folder=None): | |
| """ | |
| Create evaluator(s) for a given dataset. | |
| This uses the special metadata "evaluator_type" associated with each builtin dataset. | |
| For your own dataset, you can simply create an evaluator manually in your | |
| script and do not have to worry about the hacky if-else logic here. | |
| """ | |
| if output_folder is None: | |
| output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") | |
| os.makedirs(output_folder, exist_ok=True) | |
| return YTVISEvaluator(dataset_name, cfg, True, output_folder) | |
| def build_train_loader(cls, cfg): | |
| dataset_name = cfg.DATASETS.TRAIN[0] | |
| mapper = YTVISDatasetMapper(cfg, is_train=True) | |
| dataset_dict = get_detection_dataset_dicts( | |
| dataset_name, | |
| filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, | |
| proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, | |
| ) | |
| return build_detection_train_loader(cfg, mapper=mapper, dataset=dataset_dict) | |
| def build_test_loader(cls, cfg, dataset_name): | |
| dataset_name = cfg.DATASETS.TEST[0] | |
| mapper = YTVISDatasetMapper(cfg, is_train=False) | |
| return build_detection_test_loader(cfg, dataset_name, mapper=mapper) | |
| def build_lr_scheduler(cls, cfg, optimizer): | |
| """ | |
| It now calls :func:`detectron2.solver.build_lr_scheduler`. | |
| Overwrite it if you'd like a different scheduler. | |
| """ | |
| return build_lr_scheduler(cfg, optimizer) | |
| def build_optimizer(cls, cfg, model): | |
| weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM | |
| weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED | |
| defaults = {} | |
| defaults["lr"] = cfg.SOLVER.BASE_LR | |
| defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY | |
| norm_module_types = ( | |
| torch.nn.BatchNorm1d, | |
| torch.nn.BatchNorm2d, | |
| torch.nn.BatchNorm3d, | |
| torch.nn.SyncBatchNorm, | |
| # NaiveSyncBatchNorm inherits from BatchNorm2d | |
| torch.nn.GroupNorm, | |
| torch.nn.InstanceNorm1d, | |
| torch.nn.InstanceNorm2d, | |
| torch.nn.InstanceNorm3d, | |
| torch.nn.LayerNorm, | |
| torch.nn.LocalResponseNorm, | |
| ) | |
| params: List[Dict[str, Any]] = [] | |
| memo: Set[torch.nn.parameter.Parameter] = set() | |
| for module_name, module in model.named_modules(): | |
| for module_param_name, value in module.named_parameters(recurse=False): | |
| if not value.requires_grad: | |
| continue | |
| # Avoid duplicating parameters | |
| if value in memo: | |
| continue | |
| memo.add(value) | |
| hyperparams = copy.copy(defaults) | |
| if "backbone" in module_name: | |
| hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER | |
| if ( | |
| "relative_position_bias_table" in module_param_name | |
| or "absolute_pos_embed" in module_param_name | |
| ): | |
| print(module_param_name) | |
| hyperparams["weight_decay"] = 0.0 | |
| if isinstance(module, norm_module_types): | |
| hyperparams["weight_decay"] = weight_decay_norm | |
| if isinstance(module, torch.nn.Embedding): | |
| hyperparams["weight_decay"] = weight_decay_embed | |
| params.append({"params": [value], **hyperparams}) | |
| def maybe_add_full_model_gradient_clipping(optim): | |
| # detectron2 doesn't have full model gradient clipping now | |
| clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE | |
| enable = ( | |
| cfg.SOLVER.CLIP_GRADIENTS.ENABLED | |
| and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model" | |
| and clip_norm_val > 0.0 | |
| ) | |
| class FullModelGradientClippingOptimizer(optim): | |
| def step(self, closure=None): | |
| all_params = itertools.chain(*[x["params"] for x in self.param_groups]) | |
| torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val) | |
| super().step(closure=closure) | |
| return FullModelGradientClippingOptimizer if enable else optim | |
| optimizer_type = cfg.SOLVER.OPTIMIZER | |
| if optimizer_type == "SGD": | |
| optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)( | |
| params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM | |
| ) | |
| elif optimizer_type == "ADAMW": | |
| optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)( | |
| params, cfg.SOLVER.BASE_LR | |
| ) | |
| else: | |
| raise NotImplementedError(f"no optimizer type {optimizer_type}") | |
| if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model": | |
| optimizer = maybe_add_gradient_clipping(cfg, optimizer) | |
| return optimizer | |
| def test(cls, cfg, model, evaluators=None): | |
| """ | |
| Evaluate the given model. The given model is expected to already contain | |
| weights to evaluate. | |
| Args: | |
| cfg (CfgNode): | |
| model (nn.Module): | |
| evaluators (list[DatasetEvaluator] or None): if None, will call | |
| :meth:`build_evaluator`. Otherwise, must have the same length as | |
| ``cfg.DATASETS.TEST``. | |
| Returns: | |
| dict: a dict of result metrics | |
| """ | |
| from torch.cuda.amp import autocast | |
| logger = logging.getLogger(__name__) | |
| if isinstance(evaluators, DatasetEvaluator): | |
| evaluators = [evaluators] | |
| if evaluators is not None: | |
| assert len(cfg.DATASETS.TEST) == len(evaluators), "{} != {}".format( | |
| len(cfg.DATASETS.TEST), len(evaluators) | |
| ) | |
| results = OrderedDict() | |
| for idx, dataset_name in enumerate(cfg.DATASETS.TEST): | |
| data_loader = cls.build_test_loader(cfg, dataset_name) | |
| # When evaluators are passed in as arguments, | |
| # implicitly assume that evaluators can be created before data_loader. | |
| if evaluators is not None: | |
| evaluator = evaluators[idx] | |
| else: | |
| try: | |
| evaluator = cls.build_evaluator(cfg, dataset_name) | |
| except NotImplementedError: | |
| logger.warn( | |
| "No evaluator found. Use `DefaultTrainer.test(evaluators=)`, " | |
| "or implement its `build_evaluator` method." | |
| ) | |
| results[dataset_name] = {} | |
| continue | |
| with autocast(): | |
| results_i = inference_on_dataset(model, data_loader, evaluator) | |
| results[dataset_name] = results_i | |
| if comm.is_main_process(): | |
| assert isinstance( | |
| results_i, dict | |
| ), "Evaluator must return a dict on the main process. Got {} instead.".format( | |
| results_i | |
| ) | |
| logger.info("Evaluation results for {} in csv format:".format(dataset_name)) | |
| print_csv_format(results_i) | |
| if len(results) == 1: | |
| results = list(results.values())[0] | |
| return results | |
| def setup(args): | |
| """ | |
| Create configs and perform basic setups. | |
| """ | |
| cfg = get_cfg() | |
| # for poly lr schedule | |
| add_deeplab_config(cfg) | |
| add_maskformer2_config(cfg) | |
| add_maskformer2_video_config(cfg) | |
| cfg.merge_from_file(args.config_file) | |
| cfg.merge_from_list(args.opts) | |
| cfg.freeze() | |
| default_setup(cfg, args) | |
| # Setup logger for "mask_former" module | |
| setup_logger(name="mask2former") | |
| setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="mask2former_video") | |
| return cfg | |
| def main(args): | |
| cfg = setup(args) | |
| if args.eval_only: | |
| model = Trainer.build_model(cfg) | |
| DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( | |
| cfg.MODEL.WEIGHTS, resume=args.resume | |
| ) | |
| res = Trainer.test(cfg, model) | |
| if cfg.TEST.AUG.ENABLED: | |
| raise NotImplementedError | |
| if comm.is_main_process(): | |
| verify_results(cfg, res) | |
| return res | |
| trainer = Trainer(cfg) | |
| trainer.resume_or_load(resume=args.resume) | |
| return trainer.train() | |
| if __name__ == "__main__": | |
| args = default_argument_parser().parse_args() | |
| print("Command Line Args:", args) | |
| launch( | |
| main, | |
| args.num_gpus, | |
| num_machines=args.num_machines, | |
| machine_rank=args.machine_rank, | |
| dist_url=args.dist_url, | |
| args=(args,), | |
| ) | |