Spaces:
Runtime error
Runtime error
import math | |
import os.path as osp | |
import torch | |
from basicsr.archs import build_network | |
from basicsr.losses import build_loss | |
from basicsr.losses.gan_loss import r1_penalty | |
from basicsr.metrics import calculate_metric | |
from basicsr.models.base_model import BaseModel | |
from basicsr.utils import get_root_logger, imwrite, tensor2img | |
from basicsr.utils.registry import MODEL_REGISTRY | |
from collections import OrderedDict | |
from torch.nn import functional as F | |
from torchvision.ops import roi_align | |
from tqdm import tqdm | |
class GFPGANModel(BaseModel): | |
"""The GFPGAN model for Towards real-world blind face restoratin with generative facial prior""" | |
def __init__(self, opt): | |
super(GFPGANModel, self).__init__(opt) | |
self.idx = 0 # it is used for saving data for check | |
# define network | |
self.net_g = build_network(opt['network_g']) | |
self.net_g = self.model_to_device(self.net_g) | |
self.print_network(self.net_g) | |
# load pretrained model | |
load_path = self.opt['path'].get('pretrain_network_g', None) | |
if load_path is not None: | |
param_key = self.opt['path'].get('param_key_g', 'params') | |
self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key) | |
self.log_size = int(math.log(self.opt['network_g']['out_size'], 2)) | |
if self.is_train: | |
self.init_training_settings() | |
def init_training_settings(self): | |
train_opt = self.opt['train'] | |
# ----------- define net_d ----------- # | |
self.net_d = build_network(self.opt['network_d']) | |
self.net_d = self.model_to_device(self.net_d) | |
self.print_network(self.net_d) | |
# load pretrained model | |
load_path = self.opt['path'].get('pretrain_network_d', None) | |
if load_path is not None: | |
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True)) | |
# ----------- define net_g with Exponential Moving Average (EMA) ----------- # | |
# net_g_ema only used for testing on one GPU and saving. There is no need to wrap with DistributedDataParallel | |
self.net_g_ema = build_network(self.opt['network_g']).to(self.device) | |
# load pretrained model | |
load_path = self.opt['path'].get('pretrain_network_g', None) | |
if load_path is not None: | |
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema') | |
else: | |
self.model_ema(0) # copy net_g weight | |
self.net_g.train() | |
self.net_d.train() | |
self.net_g_ema.eval() | |
# ----------- facial component networks ----------- # | |
if ('network_d_left_eye' in self.opt and 'network_d_right_eye' in self.opt and 'network_d_mouth' in self.opt): | |
self.use_facial_disc = True | |
else: | |
self.use_facial_disc = False | |
if self.use_facial_disc: | |
# left eye | |
self.net_d_left_eye = build_network(self.opt['network_d_left_eye']) | |
self.net_d_left_eye = self.model_to_device(self.net_d_left_eye) | |
self.print_network(self.net_d_left_eye) | |
load_path = self.opt['path'].get('pretrain_network_d_left_eye') | |
if load_path is not None: | |
self.load_network(self.net_d_left_eye, load_path, True, 'params') | |
# right eye | |
self.net_d_right_eye = build_network(self.opt['network_d_right_eye']) | |
self.net_d_right_eye = self.model_to_device(self.net_d_right_eye) | |
self.print_network(self.net_d_right_eye) | |
load_path = self.opt['path'].get('pretrain_network_d_right_eye') | |
if load_path is not None: | |
self.load_network(self.net_d_right_eye, load_path, True, 'params') | |
# mouth | |
self.net_d_mouth = build_network(self.opt['network_d_mouth']) | |
self.net_d_mouth = self.model_to_device(self.net_d_mouth) | |
self.print_network(self.net_d_mouth) | |
load_path = self.opt['path'].get('pretrain_network_d_mouth') | |
if load_path is not None: | |
self.load_network(self.net_d_mouth, load_path, True, 'params') | |
self.net_d_left_eye.train() | |
self.net_d_right_eye.train() | |
self.net_d_mouth.train() | |
# ----------- define facial component gan loss ----------- # | |
self.cri_component = build_loss(train_opt['gan_component_opt']).to(self.device) | |
# ----------- define losses ----------- # | |
# pixel loss | |
if train_opt.get('pixel_opt'): | |
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device) | |
else: | |
self.cri_pix = None | |
# perceptual loss | |
if train_opt.get('perceptual_opt'): | |
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device) | |
else: | |
self.cri_perceptual = None | |
# L1 loss is used in pyramid loss, component style loss and identity loss | |
self.cri_l1 = build_loss(train_opt['L1_opt']).to(self.device) | |
# gan loss (wgan) | |
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device) | |
# ----------- define identity loss ----------- # | |
if 'network_identity' in self.opt: | |
self.use_identity = True | |
else: | |
self.use_identity = False | |
if self.use_identity: | |
# define identity network | |
self.network_identity = build_network(self.opt['network_identity']) | |
self.network_identity = self.model_to_device(self.network_identity) | |
self.print_network(self.network_identity) | |
load_path = self.opt['path'].get('pretrain_network_identity') | |
if load_path is not None: | |
self.load_network(self.network_identity, load_path, True, None) | |
self.network_identity.eval() | |
for param in self.network_identity.parameters(): | |
param.requires_grad = False | |
# regularization weights | |
self.r1_reg_weight = train_opt['r1_reg_weight'] # for discriminator | |
self.net_d_iters = train_opt.get('net_d_iters', 1) | |
self.net_d_init_iters = train_opt.get('net_d_init_iters', 0) | |
self.net_d_reg_every = train_opt['net_d_reg_every'] | |
# set up optimizers and schedulers | |
self.setup_optimizers() | |
self.setup_schedulers() | |
def setup_optimizers(self): | |
train_opt = self.opt['train'] | |
# ----------- optimizer g ----------- # | |
net_g_reg_ratio = 1 | |
normal_params = [] | |
for _, param in self.net_g.named_parameters(): | |
normal_params.append(param) | |
optim_params_g = [{ # add normal params first | |
'params': normal_params, | |
'lr': train_opt['optim_g']['lr'] | |
}] | |
optim_type = train_opt['optim_g'].pop('type') | |
lr = train_opt['optim_g']['lr'] * net_g_reg_ratio | |
betas = (0**net_g_reg_ratio, 0.99**net_g_reg_ratio) | |
self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, lr, betas=betas) | |
self.optimizers.append(self.optimizer_g) | |
# ----------- optimizer d ----------- # | |
net_d_reg_ratio = self.net_d_reg_every / (self.net_d_reg_every + 1) | |
normal_params = [] | |
for _, param in self.net_d.named_parameters(): | |
normal_params.append(param) | |
optim_params_d = [{ # add normal params first | |
'params': normal_params, | |
'lr': train_opt['optim_d']['lr'] | |
}] | |
optim_type = train_opt['optim_d'].pop('type') | |
lr = train_opt['optim_d']['lr'] * net_d_reg_ratio | |
betas = (0**net_d_reg_ratio, 0.99**net_d_reg_ratio) | |
self.optimizer_d = self.get_optimizer(optim_type, optim_params_d, lr, betas=betas) | |
self.optimizers.append(self.optimizer_d) | |
# ----------- optimizers for facial component networks ----------- # | |
if self.use_facial_disc: | |
# setup optimizers for facial component discriminators | |
optim_type = train_opt['optim_component'].pop('type') | |
lr = train_opt['optim_component']['lr'] | |
# left eye | |
self.optimizer_d_left_eye = self.get_optimizer( | |
optim_type, self.net_d_left_eye.parameters(), lr, betas=(0.9, 0.99)) | |
self.optimizers.append(self.optimizer_d_left_eye) | |
# right eye | |
self.optimizer_d_right_eye = self.get_optimizer( | |
optim_type, self.net_d_right_eye.parameters(), lr, betas=(0.9, 0.99)) | |
self.optimizers.append(self.optimizer_d_right_eye) | |
# mouth | |
self.optimizer_d_mouth = self.get_optimizer( | |
optim_type, self.net_d_mouth.parameters(), lr, betas=(0.9, 0.99)) | |
self.optimizers.append(self.optimizer_d_mouth) | |
def feed_data(self, data): | |
self.lq = data['lq'].to(self.device) | |
if 'gt' in data: | |
self.gt = data['gt'].to(self.device) | |
if 'loc_left_eye' in data: | |
# get facial component locations, shape (batch, 4) | |
self.loc_left_eyes = data['loc_left_eye'] | |
self.loc_right_eyes = data['loc_right_eye'] | |
self.loc_mouths = data['loc_mouth'] | |
# uncomment to check data | |
# import torchvision | |
# if self.opt['rank'] == 0: | |
# import os | |
# os.makedirs('tmp/gt', exist_ok=True) | |
# os.makedirs('tmp/lq', exist_ok=True) | |
# print(self.idx) | |
# torchvision.utils.save_image( | |
# self.gt, f'tmp/gt/gt_{self.idx}.png', nrow=4, padding=2, normalize=True, range=(-1, 1)) | |
# torchvision.utils.save_image( | |
# self.lq, f'tmp/lq/lq{self.idx}.png', nrow=4, padding=2, normalize=True, range=(-1, 1)) | |
# self.idx = self.idx + 1 | |
def construct_img_pyramid(self): | |
"""Construct image pyramid for intermediate restoration loss""" | |
pyramid_gt = [self.gt] | |
down_img = self.gt | |
for _ in range(0, self.log_size - 3): | |
down_img = F.interpolate(down_img, scale_factor=0.5, mode='bilinear', align_corners=False) | |
pyramid_gt.insert(0, down_img) | |
return pyramid_gt | |
def get_roi_regions(self, eye_out_size=80, mouth_out_size=120): | |
face_ratio = int(self.opt['network_g']['out_size'] / 512) | |
eye_out_size *= face_ratio | |
mouth_out_size *= face_ratio | |
rois_eyes = [] | |
rois_mouths = [] | |
for b in range(self.loc_left_eyes.size(0)): # loop for batch size | |
# left eye and right eye | |
img_inds = self.loc_left_eyes.new_full((2, 1), b) | |
bbox = torch.stack([self.loc_left_eyes[b, :], self.loc_right_eyes[b, :]], dim=0) # shape: (2, 4) | |
rois = torch.cat([img_inds, bbox], dim=-1) # shape: (2, 5) | |
rois_eyes.append(rois) | |
# mouse | |
img_inds = self.loc_left_eyes.new_full((1, 1), b) | |
rois = torch.cat([img_inds, self.loc_mouths[b:b + 1, :]], dim=-1) # shape: (1, 5) | |
rois_mouths.append(rois) | |
rois_eyes = torch.cat(rois_eyes, 0).to(self.device) | |
rois_mouths = torch.cat(rois_mouths, 0).to(self.device) | |
# real images | |
all_eyes = roi_align(self.gt, boxes=rois_eyes, output_size=eye_out_size) * face_ratio | |
self.left_eyes_gt = all_eyes[0::2, :, :, :] | |
self.right_eyes_gt = all_eyes[1::2, :, :, :] | |
self.mouths_gt = roi_align(self.gt, boxes=rois_mouths, output_size=mouth_out_size) * face_ratio | |
# output | |
all_eyes = roi_align(self.output, boxes=rois_eyes, output_size=eye_out_size) * face_ratio | |
self.left_eyes = all_eyes[0::2, :, :, :] | |
self.right_eyes = all_eyes[1::2, :, :, :] | |
self.mouths = roi_align(self.output, boxes=rois_mouths, output_size=mouth_out_size) * face_ratio | |
def _gram_mat(self, x): | |
"""Calculate Gram matrix. | |
Args: | |
x (torch.Tensor): Tensor with shape of (n, c, h, w). | |
Returns: | |
torch.Tensor: Gram matrix. | |
""" | |
n, c, h, w = x.size() | |
features = x.view(n, c, w * h) | |
features_t = features.transpose(1, 2) | |
gram = features.bmm(features_t) / (c * h * w) | |
return gram | |
def gray_resize_for_identity(self, out, size=128): | |
out_gray = (0.2989 * out[:, 0, :, :] + 0.5870 * out[:, 1, :, :] + 0.1140 * out[:, 2, :, :]) | |
out_gray = out_gray.unsqueeze(1) | |
out_gray = F.interpolate(out_gray, (size, size), mode='bilinear', align_corners=False) | |
return out_gray | |
def optimize_parameters(self, current_iter): | |
# optimize net_g | |
for p in self.net_d.parameters(): | |
p.requires_grad = False | |
self.optimizer_g.zero_grad() | |
# do not update facial component net_d | |
if self.use_facial_disc: | |
for p in self.net_d_left_eye.parameters(): | |
p.requires_grad = False | |
for p in self.net_d_right_eye.parameters(): | |
p.requires_grad = False | |
for p in self.net_d_mouth.parameters(): | |
p.requires_grad = False | |
# image pyramid loss weight | |
if current_iter < self.opt['train'].get('remove_pyramid_loss', float('inf')): | |
pyramid_loss_weight = self.opt['train'].get('pyramid_loss_weight', 1) | |
else: | |
pyramid_loss_weight = 1e-12 # very small loss | |
if pyramid_loss_weight > 0: | |
self.output, out_rgbs = self.net_g(self.lq, return_rgb=True) | |
pyramid_gt = self.construct_img_pyramid() | |
else: | |
self.output, out_rgbs = self.net_g(self.lq, return_rgb=False) | |
# get roi-align regions | |
if self.use_facial_disc: | |
self.get_roi_regions(eye_out_size=80, mouth_out_size=120) | |
l_g_total = 0 | |
loss_dict = OrderedDict() | |
if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters): | |
# pixel loss | |
if self.cri_pix: | |
l_g_pix = self.cri_pix(self.output, self.gt) | |
l_g_total += l_g_pix | |
loss_dict['l_g_pix'] = l_g_pix | |
# image pyramid loss | |
if pyramid_loss_weight > 0: | |
for i in range(0, self.log_size - 2): | |
l_pyramid = self.cri_l1(out_rgbs[i], pyramid_gt[i]) * pyramid_loss_weight | |
l_g_total += l_pyramid | |
loss_dict[f'l_p_{2**(i+3)}'] = l_pyramid | |
# perceptual loss | |
if self.cri_perceptual: | |
l_g_percep, l_g_style = self.cri_perceptual(self.output, self.gt) | |
if l_g_percep is not None: | |
l_g_total += l_g_percep | |
loss_dict['l_g_percep'] = l_g_percep | |
if l_g_style is not None: | |
l_g_total += l_g_style | |
loss_dict['l_g_style'] = l_g_style | |
# gan loss | |
fake_g_pred = self.net_d(self.output) | |
l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False) | |
l_g_total += l_g_gan | |
loss_dict['l_g_gan'] = l_g_gan | |
# facial component loss | |
if self.use_facial_disc: | |
# left eye | |
fake_left_eye, fake_left_eye_feats = self.net_d_left_eye(self.left_eyes, return_feats=True) | |
l_g_gan = self.cri_component(fake_left_eye, True, is_disc=False) | |
l_g_total += l_g_gan | |
loss_dict['l_g_gan_left_eye'] = l_g_gan | |
# right eye | |
fake_right_eye, fake_right_eye_feats = self.net_d_right_eye(self.right_eyes, return_feats=True) | |
l_g_gan = self.cri_component(fake_right_eye, True, is_disc=False) | |
l_g_total += l_g_gan | |
loss_dict['l_g_gan_right_eye'] = l_g_gan | |
# mouth | |
fake_mouth, fake_mouth_feats = self.net_d_mouth(self.mouths, return_feats=True) | |
l_g_gan = self.cri_component(fake_mouth, True, is_disc=False) | |
l_g_total += l_g_gan | |
loss_dict['l_g_gan_mouth'] = l_g_gan | |
if self.opt['train'].get('comp_style_weight', 0) > 0: | |
# get gt feat | |
_, real_left_eye_feats = self.net_d_left_eye(self.left_eyes_gt, return_feats=True) | |
_, real_right_eye_feats = self.net_d_right_eye(self.right_eyes_gt, return_feats=True) | |
_, real_mouth_feats = self.net_d_mouth(self.mouths_gt, return_feats=True) | |
def _comp_style(feat, feat_gt, criterion): | |
return criterion(self._gram_mat(feat[0]), self._gram_mat( | |
feat_gt[0].detach())) * 0.5 + criterion( | |
self._gram_mat(feat[1]), self._gram_mat(feat_gt[1].detach())) | |
# facial component style loss | |
comp_style_loss = 0 | |
comp_style_loss += _comp_style(fake_left_eye_feats, real_left_eye_feats, self.cri_l1) | |
comp_style_loss += _comp_style(fake_right_eye_feats, real_right_eye_feats, self.cri_l1) | |
comp_style_loss += _comp_style(fake_mouth_feats, real_mouth_feats, self.cri_l1) | |
comp_style_loss = comp_style_loss * self.opt['train']['comp_style_weight'] | |
l_g_total += comp_style_loss | |
loss_dict['l_g_comp_style_loss'] = comp_style_loss | |
# identity loss | |
if self.use_identity: | |
identity_weight = self.opt['train']['identity_weight'] | |
# get gray images and resize | |
out_gray = self.gray_resize_for_identity(self.output) | |
gt_gray = self.gray_resize_for_identity(self.gt) | |
identity_gt = self.network_identity(gt_gray).detach() | |
identity_out = self.network_identity(out_gray) | |
l_identity = self.cri_l1(identity_out, identity_gt) * identity_weight | |
l_g_total += l_identity | |
loss_dict['l_identity'] = l_identity | |
l_g_total.backward() | |
self.optimizer_g.step() | |
# EMA | |
self.model_ema(decay=0.5**(32 / (10 * 1000))) | |
# ----------- optimize net_d ----------- # | |
for p in self.net_d.parameters(): | |
p.requires_grad = True | |
self.optimizer_d.zero_grad() | |
if self.use_facial_disc: | |
for p in self.net_d_left_eye.parameters(): | |
p.requires_grad = True | |
for p in self.net_d_right_eye.parameters(): | |
p.requires_grad = True | |
for p in self.net_d_mouth.parameters(): | |
p.requires_grad = True | |
self.optimizer_d_left_eye.zero_grad() | |
self.optimizer_d_right_eye.zero_grad() | |
self.optimizer_d_mouth.zero_grad() | |
fake_d_pred = self.net_d(self.output.detach()) | |
real_d_pred = self.net_d(self.gt) | |
l_d = self.cri_gan(real_d_pred, True, is_disc=True) + self.cri_gan(fake_d_pred, False, is_disc=True) | |
loss_dict['l_d'] = l_d | |
# In WGAN, real_score should be positive and fake_score should be negative | |
loss_dict['real_score'] = real_d_pred.detach().mean() | |
loss_dict['fake_score'] = fake_d_pred.detach().mean() | |
l_d.backward() | |
# regularization loss | |
if current_iter % self.net_d_reg_every == 0: | |
self.gt.requires_grad = True | |
real_pred = self.net_d(self.gt) | |
l_d_r1 = r1_penalty(real_pred, self.gt) | |
l_d_r1 = (self.r1_reg_weight / 2 * l_d_r1 * self.net_d_reg_every + 0 * real_pred[0]) | |
loss_dict['l_d_r1'] = l_d_r1.detach().mean() | |
l_d_r1.backward() | |
self.optimizer_d.step() | |
# optimize facial component discriminators | |
if self.use_facial_disc: | |
# left eye | |
fake_d_pred, _ = self.net_d_left_eye(self.left_eyes.detach()) | |
real_d_pred, _ = self.net_d_left_eye(self.left_eyes_gt) | |
l_d_left_eye = self.cri_component( | |
real_d_pred, True, is_disc=True) + self.cri_gan( | |
fake_d_pred, False, is_disc=True) | |
loss_dict['l_d_left_eye'] = l_d_left_eye | |
l_d_left_eye.backward() | |
# right eye | |
fake_d_pred, _ = self.net_d_right_eye(self.right_eyes.detach()) | |
real_d_pred, _ = self.net_d_right_eye(self.right_eyes_gt) | |
l_d_right_eye = self.cri_component( | |
real_d_pred, True, is_disc=True) + self.cri_gan( | |
fake_d_pred, False, is_disc=True) | |
loss_dict['l_d_right_eye'] = l_d_right_eye | |
l_d_right_eye.backward() | |
# mouth | |
fake_d_pred, _ = self.net_d_mouth(self.mouths.detach()) | |
real_d_pred, _ = self.net_d_mouth(self.mouths_gt) | |
l_d_mouth = self.cri_component( | |
real_d_pred, True, is_disc=True) + self.cri_gan( | |
fake_d_pred, False, is_disc=True) | |
loss_dict['l_d_mouth'] = l_d_mouth | |
l_d_mouth.backward() | |
self.optimizer_d_left_eye.step() | |
self.optimizer_d_right_eye.step() | |
self.optimizer_d_mouth.step() | |
self.log_dict = self.reduce_loss_dict(loss_dict) | |
def test(self): | |
with torch.no_grad(): | |
if hasattr(self, 'net_g_ema'): | |
self.net_g_ema.eval() | |
self.output, _ = self.net_g_ema(self.lq) | |
else: | |
logger = get_root_logger() | |
logger.warning('Do not have self.net_g_ema, use self.net_g.') | |
self.net_g.eval() | |
self.output, _ = self.net_g(self.lq) | |
self.net_g.train() | |
def dist_validation(self, dataloader, current_iter, tb_logger, save_img): | |
if self.opt['rank'] == 0: | |
self.nondist_validation(dataloader, current_iter, tb_logger, save_img) | |
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img): | |
dataset_name = dataloader.dataset.opt['name'] | |
with_metrics = self.opt['val'].get('metrics') is not None | |
use_pbar = self.opt['val'].get('pbar', False) | |
if with_metrics: | |
if not hasattr(self, 'metric_results'): # only execute in the first run | |
self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()} | |
# initialize the best metric results for each dataset_name (supporting multiple validation datasets) | |
self._initialize_best_metric_results(dataset_name) | |
# zero self.metric_results | |
self.metric_results = {metric: 0 for metric in self.metric_results} | |
metric_data = dict() | |
if use_pbar: | |
pbar = tqdm(total=len(dataloader), unit='image') | |
for idx, val_data in enumerate(dataloader): | |
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0] | |
self.feed_data(val_data) | |
self.test() | |
sr_img = tensor2img(self.output.detach().cpu(), min_max=(-1, 1)) | |
metric_data['img'] = sr_img | |
if hasattr(self, 'gt'): | |
gt_img = tensor2img(self.gt.detach().cpu(), min_max=(-1, 1)) | |
metric_data['img2'] = gt_img | |
del self.gt | |
# tentative for out of GPU memory | |
del self.lq | |
del self.output | |
torch.cuda.empty_cache() | |
if save_img: | |
if self.opt['is_train']: | |
save_img_path = osp.join(self.opt['path']['visualization'], img_name, | |
f'{img_name}_{current_iter}.png') | |
else: | |
if self.opt['val']['suffix']: | |
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, | |
f'{img_name}_{self.opt["val"]["suffix"]}.png') | |
else: | |
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, | |
f'{img_name}_{self.opt["name"]}.png') | |
imwrite(sr_img, save_img_path) | |
if with_metrics: | |
# calculate metrics | |
for name, opt_ in self.opt['val']['metrics'].items(): | |
self.metric_results[name] += calculate_metric(metric_data, opt_) | |
if use_pbar: | |
pbar.update(1) | |
pbar.set_description(f'Test {img_name}') | |
if use_pbar: | |
pbar.close() | |
if with_metrics: | |
for metric in self.metric_results.keys(): | |
self.metric_results[metric] /= (idx + 1) | |
# update the best metric result | |
self._update_best_metric_result(dataset_name, metric, self.metric_results[metric], current_iter) | |
self._log_validation_metric_values(current_iter, dataset_name, tb_logger) | |
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger): | |
log_str = f'Validation {dataset_name}\n' | |
for metric, value in self.metric_results.items(): | |
log_str += f'\t # {metric}: {value:.4f}' | |
if hasattr(self, 'best_metric_results'): | |
log_str += (f'\tBest: {self.best_metric_results[dataset_name][metric]["val"]:.4f} @ ' | |
f'{self.best_metric_results[dataset_name][metric]["iter"]} iter') | |
log_str += '\n' | |
logger = get_root_logger() | |
logger.info(log_str) | |
if tb_logger: | |
for metric, value in self.metric_results.items(): | |
tb_logger.add_scalar(f'metrics/{dataset_name}/{metric}', value, current_iter) | |
def save(self, epoch, current_iter): | |
# save net_g and net_d | |
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema']) | |
self.save_network(self.net_d, 'net_d', current_iter) | |
# save component discriminators | |
if self.use_facial_disc: | |
self.save_network(self.net_d_left_eye, 'net_d_left_eye', current_iter) | |
self.save_network(self.net_d_right_eye, 'net_d_right_eye', current_iter) | |
self.save_network(self.net_d_mouth, 'net_d_mouth', current_iter) | |
# save training state | |
self.save_training_state(epoch, current_iter) | |