Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
3 |
+
import os, re
|
4 |
+
import torch
|
5 |
+
from rank_bm25 import BM25Okapi
|
6 |
+
from sklearn.feature_extraction import _stop_words
|
7 |
+
import string
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
from newspaper import Article
|
11 |
+
import base64
|
12 |
+
import docx2txt
|
13 |
+
from io import StringIO
|
14 |
+
from PyPDF2 import PdfFileReader
|
15 |
+
import validators
|
16 |
+
import nltk
|
17 |
+
import warnings
|
18 |
+
import streamlit as st
|
19 |
+
from PIL import Image
|
20 |
+
|
21 |
+
|
22 |
+
nltk.download('punkt')
|
23 |
+
|
24 |
+
from nltk import sent_tokenize
|
25 |
+
|
26 |
+
warnings.filterwarnings("ignore")
|
27 |
+
|
28 |
+
def extract_text_from_url(url: str):
|
29 |
+
|
30 |
+
'''Extract text from url'''
|
31 |
+
|
32 |
+
article = Article(url)
|
33 |
+
article.download()
|
34 |
+
article.parse()
|
35 |
+
|
36 |
+
# get text
|
37 |
+
text = article.text
|
38 |
+
|
39 |
+
# get article title
|
40 |
+
title = article.title
|
41 |
+
|
42 |
+
return title, text
|
43 |
+
|
44 |
+
def extract_text_from_file(file):
|
45 |
+
|
46 |
+
'''Extract text from uploaded file'''
|
47 |
+
|
48 |
+
# read text file
|
49 |
+
if file.type == "text/plain":
|
50 |
+
# To convert to a string based IO:
|
51 |
+
stringio = StringIO(file.getvalue().decode("utf-8"))
|
52 |
+
|
53 |
+
# To read file as string:
|
54 |
+
file_text = stringio.read()
|
55 |
+
|
56 |
+
return file_text, None
|
57 |
+
|
58 |
+
# read pdf file
|
59 |
+
elif file.type == "application/pdf":
|
60 |
+
pdfReader = PdfFileReader(file)
|
61 |
+
count = pdfReader.numPages
|
62 |
+
all_text = ""
|
63 |
+
pdf_title = pdfReader.getDocumentInfo().title
|
64 |
+
|
65 |
+
for i in range(count):
|
66 |
+
|
67 |
+
try:
|
68 |
+
page = pdfReader.getPage(i)
|
69 |
+
all_text += page.extractText()
|
70 |
+
|
71 |
+
except:
|
72 |
+
continue
|
73 |
+
|
74 |
+
file_text = all_text
|
75 |
+
|
76 |
+
return file_text, pdf_title
|
77 |
+
|
78 |
+
# read docx file
|
79 |
+
elif (
|
80 |
+
file.type
|
81 |
+
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
82 |
+
):
|
83 |
+
file_text = docx2txt.process(file)
|
84 |
+
|
85 |
+
return file_text, None
|
86 |
+
|
87 |
+
def preprocess_plain_text(text,window_size=3):
|
88 |
+
|
89 |
+
text = text.encode("ascii", "ignore").decode() # unicode
|
90 |
+
text = re.sub(r"https*\S+", " ", text) # url
|
91 |
+
text = re.sub(r"@\S+", " ", text) # mentions
|
92 |
+
text = re.sub(r"#\S+", " ", text) # hastags
|
93 |
+
text = re.sub(r"\s{2,}", " ", text) # over spaces
|
94 |
+
#text = re.sub("[^.,!?%$A-Za-z0-9]+", " ", text) # special characters except .,!?
|
95 |
+
|
96 |
+
#break into lines and remove leading and trailing space on each
|
97 |
+
lines = [line.strip() for line in text.splitlines()]
|
98 |
+
|
99 |
+
# #break multi-headlines into a line each
|
100 |
+
chunks = [phrase.strip() for line in lines for phrase in line.split(" ")]
|
101 |
+
|
102 |
+
# # drop blank lines
|
103 |
+
text = '\n'.join(chunk for chunk in chunks if chunk)
|
104 |
+
|
105 |
+
## We split this article into paragraphs and then every paragraph into sentences
|
106 |
+
paragraphs = []
|
107 |
+
for paragraph in text.replace('\n',' ').split("\n\n"):
|
108 |
+
if len(paragraph.strip()) > 0:
|
109 |
+
paragraphs.append(sent_tokenize(paragraph.strip()))
|
110 |
+
|
111 |
+
#We combine up to 3 sentences into a passage. You can choose smaller or larger values for window_size
|
112 |
+
#Smaller value: Context from other sentences might get lost
|
113 |
+
#Lager values: More context from the paragraph remains, but results are longer
|
114 |
+
window_size = window_size
|
115 |
+
passages = []
|
116 |
+
for paragraph in paragraphs:
|
117 |
+
for start_idx in range(0, len(paragraph), window_size):
|
118 |
+
end_idx = min(start_idx+window_size, len(paragraph))
|
119 |
+
passages.append(" ".join(paragraph[start_idx:end_idx]))
|
120 |
+
|
121 |
+
st.write(f"Sentences: {sum([len(p) for p in paragraphs])}")
|
122 |
+
st.write(f"Passages: {len(passages)}")
|
123 |
+
|
124 |
+
return passages
|
125 |
+
|
126 |
+
@st.cache(allow_output_mutation=True,suppress_st_warning=True)
|
127 |
+
def bi_encode(bi_enc,passages):
|
128 |
+
|
129 |
+
global bi_encoder
|
130 |
+
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
|
131 |
+
bi_encoder = SentenceTransformer(bi_enc)
|
132 |
+
|
133 |
+
#quantize the model
|
134 |
+
#bi_encoder = quantize_dynamic(model, {Linear, Embedding})
|
135 |
+
|
136 |
+
#Compute the embeddings using the multi-process pool
|
137 |
+
with st.spinner('Encoding passages into a vector space...'):
|
138 |
+
|
139 |
+
corpus_embeddings = bi_encoder.encode(passages, convert_to_tensor=True, show_progress_bar=True)
|
140 |
+
|
141 |
+
st.success(f"Embeddings computed. Shape: {corpus_embeddings.shape}")
|
142 |
+
|
143 |
+
return bi_encoder, corpus_embeddings
|
144 |
+
|
145 |
+
@st.cache(allow_output_mutation=True)
|
146 |
+
def cross_encode():
|
147 |
+
|
148 |
+
global cross_encoder
|
149 |
+
#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
|
150 |
+
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
|
151 |
+
return cross_encoder
|
152 |
+
|
153 |
+
@st.cache(allow_output_mutation=True)
|
154 |
+
def bm25_tokenizer(text):
|
155 |
+
|
156 |
+
# We also compare the results to lexical search (keyword search). Here, we use
|
157 |
+
# the BM25 algorithm which is implemented in the rank_bm25 package.
|
158 |
+
# We lower case our text and remove stop-words from indexing
|
159 |
+
tokenized_doc = []
|
160 |
+
for token in text.lower().split():
|
161 |
+
token = token.strip(string.punctuation)
|
162 |
+
|
163 |
+
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
|
164 |
+
tokenized_doc.append(token)
|
165 |
+
return tokenized_doc
|
166 |
+
|
167 |
+
@st.cache(allow_output_mutation=True)
|
168 |
+
def bm25_api(passages):
|
169 |
+
|
170 |
+
tokenized_corpus = []
|
171 |
+
|
172 |
+
for passage in passages:
|
173 |
+
tokenized_corpus.append(bm25_tokenizer(passage))
|
174 |
+
|
175 |
+
bm25 = BM25Okapi(tokenized_corpus)
|
176 |
+
|
177 |
+
return bm25
|
178 |
+
|
179 |
+
bi_enc_options = ["multi-qa-mpnet-base-dot-v1","all-mpnet-base-v2","multi-qa-MiniLM-L6-cos-v1"]
|
180 |
+
|
181 |
+
def display_df_as_table(model,top_k,score='score'):
|
182 |
+
# Display the df with text and scores as a table
|
183 |
+
df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in model[0:top_k]],columns=['Score','Text'])
|
184 |
+
df['Score'] = round(df['Score'],2)
|
185 |
+
|
186 |
+
return df
|
187 |
+
|
188 |
+
#Streamlit App
|
189 |
+
|
190 |
+
st.title("Semantic Search with Retrieve & Rerank 📝")
|
191 |
+
|
192 |
+
"""
|
193 |
+
[![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
|
194 |
+
"""
|
195 |
+
|
196 |
+
window_size = st.sidebar.slider("Paragraph Window Size",min_value=1,max_value=10,value=3,key=
|
197 |
+
'slider')
|
198 |
+
|
199 |
+
bi_encoder_type = st.sidebar.selectbox("Bi-Encoder", options=bi_enc_options, key='sbox')
|
200 |
+
|
201 |
+
top_k = st.sidebar.slider("Number of Top Hits Generated",min_value=1,max_value=5,value=2)
|
202 |
+
|
203 |
+
# This function will search all wikipedia articles for passages that
|
204 |
+
# answer the query
|
205 |
+
def search_func(query, top_k=top_k):
|
206 |
+
|
207 |
+
global bi_encoder, cross_encoder
|
208 |
+
|
209 |
+
st.subheader(f"Search Query: {query}")
|
210 |
+
|
211 |
+
if url_text:
|
212 |
+
|
213 |
+
st.write(f"Document Header: {title}")
|
214 |
+
|
215 |
+
elif pdf_title:
|
216 |
+
|
217 |
+
st.write(f"Document Header: {pdf_title}")
|
218 |
+
|
219 |
+
##### BM25 search (lexical search) #####
|
220 |
+
bm25_scores = bm25.get_scores(bm25_tokenizer(query))
|
221 |
+
top_n = np.argpartition(bm25_scores, -5)[-5:]
|
222 |
+
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
|
223 |
+
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
|
224 |
+
|
225 |
+
st.subheader(f"Top-{top_k} lexical search (BM25) hits")
|
226 |
+
|
227 |
+
bm25_df = display_df_as_table(bm25_hits,top_k)
|
228 |
+
st.write(bm25_df.to_html(index=False), unsafe_allow_html=True)
|
229 |
+
|
230 |
+
##### Sematic Search #####
|
231 |
+
# Encode the query using the bi-encoder and find potentially relevant passages
|
232 |
+
question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
|
233 |
+
question_embedding = question_embedding.cpu()
|
234 |
+
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k,score_function=util.dot_score)
|
235 |
+
hits = hits[0] # Get the hits for the first query
|
236 |
+
|
237 |
+
##### Re-Ranking #####
|
238 |
+
# Now, score all retrieved passages with the cross_encoder
|
239 |
+
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
|
240 |
+
cross_scores = cross_encoder.predict(cross_inp)
|
241 |
+
|
242 |
+
# Sort results by the cross-encoder scores
|
243 |
+
for idx in range(len(cross_scores)):
|
244 |
+
hits[idx]['cross-score'] = cross_scores[idx]
|
245 |
+
|
246 |
+
# Output of top-3 hits from bi-encoder
|
247 |
+
st.markdown("\n-------------------------\n")
|
248 |
+
st.subheader(f"Top-{top_k} Bi-Encoder Retrieval hits")
|
249 |
+
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
|
250 |
+
|
251 |
+
cross_df = display_df_as_table(hits,top_k)
|
252 |
+
st.write(cross_df.to_html(index=False), unsafe_allow_html=True)
|
253 |
+
|
254 |
+
# Output of top-3 hits from re-ranker
|
255 |
+
st.markdown("\n-------------------------\n")
|
256 |
+
st.subheader(f"Top-{top_k} Cross-Encoder Re-ranker hits")
|
257 |
+
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
|
258 |
+
|
259 |
+
rerank_df = display_df_as_table(hits,top_k,'cross-score')
|
260 |
+
st.write(rerank_df.to_html(index=False), unsafe_allow_html=True)
|
261 |
+
|
262 |
+
st.markdown(
|
263 |
+
"""
|
264 |
+
- The app supports asymmetric Semantic search which seeks to improve search accuracy of documents/URL by understanding the content of the search query in contrast to traditional search engines which only find documents based on lexical matches.
|
265 |
+
- The idea behind semantic search is to embed all entries in your corpus, whether they be sentences, paragraphs, or documents, into a vector space. At search time, the query is embedded into the same vector space and the closest embeddings from your corpus are found. These entries should have a high semantic overlap with the query.
|
266 |
+
- The all-* models where trained on all available training data (more than 1 billion training pairs) and are designed as general purpose models. The all-mpnet-base-v2 model provides the best quality, while all-MiniLM-L6-v2 is 5 times faster and still offers good quality. The models used have been trained on broad datasets, however, if your document/corpus is specialised, such as for science or economics, the results returned might be unsatisfactory.""")
|
267 |
+
|
268 |
+
st.markdown("""There models available to choose from:""")
|
269 |
+
|
270 |
+
st.markdown(
|
271 |
+
"""
|
272 |
+
Model Source:
|
273 |
+
- Bi-Encoders - [multi-qa-mpnet-base-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1), [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2), [multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1) and [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
|
274 |
+
- Cross-Encoder - [cross-encoder/ms-marco-MiniLM-L-12-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2)""")
|
275 |
+
|
276 |
+
st.markdown(
|
277 |
+
"""
|
278 |
+
Code and App Inspiration Source: [Sentence Transformers](https://www.sbert.net/examples/applications/retrieve_rerank/README.html)""")
|
279 |
+
|
280 |
+
st.markdown(
|
281 |
+
"""
|
282 |
+
Quick summary of the purposes of a Bi and Cross-encoder below, the image and info were adapted from [www.sbert.net](https://www.sbert.net/examples/applications/semantic-search/README.html):""")
|
283 |
+
|
284 |
+
st.markdown(
|
285 |
+
"""
|
286 |
+
- Bi-Encoder (Retrieval): The Bi-encoder is responsible for independently embedding the sentences and search queries into a vector space. The result is then passed to the cross-encoder for checking the relevance/similarity between the query and sentences.
|
287 |
+
- Cross-Encoder (Re-Ranker): A re-ranker based on a Cross-Encoder can substantially improve the final results for the user. The query and a possible document is passed simultaneously to transformer network, which then outputs a single score between 0 and 1 indicating how relevant the document is for the given query. The cross-encoder further boost the performance, especially when you search over a corpus for which the bi-encoder was not trained for.""")
|
288 |
+
|
289 |
+
st.image(Image.open('encoder.png'), caption='Retrieval and Re-Rank')
|
290 |
+
|
291 |
+
st.markdown("""
|
292 |
+
In order to use the app:
|
293 |
+
- Select the preferred Sentence Transformer model (Bi-Encoder).
|
294 |
+
- Select the number of sentences per paragraph to partition your corpus (Window-Size), if you choose a small value the context from the other sentences might get lost and for larger values the results might take longer to generate.
|
295 |
+
- Select the number of top hits to be generated.
|
296 |
+
- Paste the URL with your corpus or upload your preferred document in txt, pdf or Word format.
|
297 |
+
- Semantic Search away!! """
|
298 |
+
)
|
299 |
+
|
300 |
+
st.markdown("---")
|
301 |
+
|
302 |
+
def clear_text():
|
303 |
+
st.session_state["text_url"] = ""
|
304 |
+
st.session_state["text_input"]= ""
|
305 |
+
|
306 |
+
def clear_search_text():
|
307 |
+
st.session_state["text_input"]= ""
|
308 |
+
|
309 |
+
url_text = st.text_input("Please Enter a url here",value="https://www.rba.gov.au/monetary-policy/rba-board-minutes/2022/2022-05-03.html",key='text_url',on_change=clear_search_text)
|
310 |
+
|
311 |
+
st.markdown(
|
312 |
+
"<h3 style='text-align: center; color: red;'>OR</h3>",
|
313 |
+
unsafe_allow_html=True,
|
314 |
+
)
|
315 |
+
|
316 |
+
upload_doc = st.file_uploader("Upload a .txt, .pdf, .docx file",key="upload")
|
317 |
+
|
318 |
+
search_query = st.text_input("Please Enter your search query here",value="What are the expectations for inflation for Australia?",key="text_input")
|
319 |
+
|
320 |
+
if validators.url(url_text):
|
321 |
+
#if input is URL
|
322 |
+
title, text = extract_text_from_url(url_text)
|
323 |
+
passages = preprocess_plain_text(text,window_size=window_size)
|
324 |
+
|
325 |
+
elif upload_doc:
|
326 |
+
|
327 |
+
text, pdf_title = extract_text_from_file(upload_doc)
|
328 |
+
passages = preprocess_plain_text(text,window_size=window_size)
|
329 |
+
|
330 |
+
col1, col2 = st.columns(2)
|
331 |
+
|
332 |
+
with col1:
|
333 |
+
search = st.button("Search",key='search_but', help='Click to Search!!')
|
334 |
+
|
335 |
+
with col2:
|
336 |
+
clear = st.button("Clear Text Input", on_click=clear_text,key='clear',help='Click to clear the URL input and search query')
|
337 |
+
|
338 |
+
if search:
|
339 |
+
if bi_encoder_type:
|
340 |
+
|
341 |
+
with st.spinner(
|
342 |
+
text=f"Loading {bi_encoder_type} bi-encoder and embedding document into vector space. This might take a few seconds depending on the length of your document..."
|
343 |
+
):
|
344 |
+
bi_encoder, corpus_embeddings = bi_encode(bi_encoder_type,passages)
|
345 |
+
cross_encoder = cross_encode()
|
346 |
+
bm25 = bm25_api(passages)
|
347 |
+
|
348 |
+
with st.spinner(
|
349 |
+
text="Embedding completed, searching for relevant text for given query and hits..."):
|
350 |
+
|
351 |
+
search_func(search_query,top_k)
|
352 |
+
|
353 |
+
st.markdown("""
|
354 |
+
""")
|
355 |
+
|
356 |
+
st.markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-semantic-search-with-retrieve-and-rerank)")
|