|
from dataclasses import dataclass |
|
|
|
import os |
|
import copy |
|
import json |
|
from omegaconf import OmegaConf |
|
import torch |
|
import torch.nn as nn |
|
|
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import ( |
|
extract_commit_hash, |
|
) |
|
|
|
from step1x3d_geometry.utils.config import parse_structured |
|
from step1x3d_geometry.utils.misc import get_device, load_module_weights |
|
from step1x3d_geometry.utils.typing import * |
|
|
|
|
|
class Configurable: |
|
@dataclass |
|
class Config: |
|
pass |
|
|
|
def __init__(self, cfg: Optional[dict] = None) -> None: |
|
super().__init__() |
|
self.cfg = parse_structured(self.Config, cfg) |
|
|
|
|
|
class Updateable: |
|
def do_update_step( |
|
self, epoch: int, global_step: int, on_load_weights: bool = False |
|
): |
|
for attr in self.__dir__(): |
|
if attr.startswith("_"): |
|
continue |
|
try: |
|
module = getattr(self, attr) |
|
except: |
|
continue |
|
if isinstance(module, Updateable): |
|
module.do_update_step( |
|
epoch, global_step, on_load_weights=on_load_weights |
|
) |
|
self.update_step(epoch, global_step, on_load_weights=on_load_weights) |
|
|
|
def do_update_step_end(self, epoch: int, global_step: int): |
|
for attr in self.__dir__(): |
|
if attr.startswith("_"): |
|
continue |
|
try: |
|
module = getattr(self, attr) |
|
except: |
|
continue |
|
if isinstance(module, Updateable): |
|
module.do_update_step_end(epoch, global_step) |
|
self.update_step_end(epoch, global_step) |
|
|
|
def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): |
|
|
|
|
|
|
|
pass |
|
|
|
def update_step_end(self, epoch: int, global_step: int): |
|
pass |
|
|
|
|
|
def update_if_possible(module: Any, epoch: int, global_step: int) -> None: |
|
if isinstance(module, Updateable): |
|
module.do_update_step(epoch, global_step) |
|
|
|
|
|
def update_end_if_possible(module: Any, epoch: int, global_step: int) -> None: |
|
if isinstance(module, Updateable): |
|
module.do_update_step_end(epoch, global_step) |
|
|
|
|
|
class BaseObject(Updateable): |
|
@dataclass |
|
class Config: |
|
pass |
|
|
|
cfg: Config |
|
|
|
def __init__( |
|
self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs |
|
) -> None: |
|
super().__init__() |
|
self.cfg = parse_structured(self.Config, cfg) |
|
self.device = get_device() |
|
self.configure(*args, **kwargs) |
|
|
|
def configure(self, *args, **kwargs) -> None: |
|
pass |
|
|
|
|
|
class BaseModule(ModelMixin, Updateable, nn.Module): |
|
@dataclass |
|
class Config: |
|
weights: Optional[str] = None |
|
|
|
cfg: Config |
|
config_name = "config.json" |
|
|
|
def __init__( |
|
self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs |
|
) -> None: |
|
super().__init__() |
|
self.cfg = parse_structured(self.Config, cfg) |
|
|
|
self.configure(*args, **kwargs) |
|
if self.cfg.weights is not None: |
|
|
|
weights_path, module_name = self.cfg.weights.split(":") |
|
state_dict, epoch, global_step = load_module_weights( |
|
weights_path, module_name=module_name, map_location="cpu" |
|
) |
|
self.load_state_dict(state_dict) |
|
self.do_update_step( |
|
epoch, global_step, on_load_weights=True |
|
) |
|
|
|
self._dummy: Float[Tensor, "..."] |
|
self.register_buffer("_dummy", torch.zeros(0).float(), persistent=False) |
|
|
|
def configure(self, *args, **kwargs) -> None: |
|
pass |
|
|
|
@classmethod |
|
def load_config( |
|
cls, |
|
pretrained_model_name_or_path: Union[str, os.PathLike], |
|
return_unused_kwargs=False, |
|
return_commit_hash=False, |
|
**kwargs, |
|
): |
|
subfolder = kwargs.pop("subfolder", None) |
|
|
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path) |
|
if os.path.isfile(pretrained_model_name_or_path): |
|
config_file = pretrained_model_name_or_path |
|
elif os.path.isdir(pretrained_model_name_or_path): |
|
if subfolder is not None and os.path.isfile( |
|
os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name) |
|
): |
|
config_file = os.path.join( |
|
pretrained_model_name_or_path, subfolder, cls.config_name |
|
) |
|
elif os.path.isfile( |
|
os.path.join(pretrained_model_name_or_path, cls.config_name) |
|
): |
|
|
|
config_file = os.path.join( |
|
pretrained_model_name_or_path, cls.config_name |
|
) |
|
else: |
|
raise EnvironmentError( |
|
f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}." |
|
) |
|
else: |
|
raise ValueError |
|
|
|
config_dict = json.load(open(config_file, "r")) |
|
commit_hash = extract_commit_hash(config_file) |
|
|
|
outputs = (config_dict,) |
|
|
|
if return_unused_kwargs: |
|
outputs += (kwargs,) |
|
|
|
if return_commit_hash: |
|
outputs += (commit_hash,) |
|
|
|
return outputs |
|
|
|
@classmethod |
|
def from_config(cls, config: Dict[str, Any] = None, **kwargs): |
|
model = cls(config) |
|
return model |
|
|
|
def register_to_config(self, **kwargs): |
|
pass |
|
|
|
def save_config(self, save_directory: Union[str, os.PathLike], **kwargs): |
|
""" |
|
Save a configuration object to the directory specified in `save_directory` so that it can be reloaded using the |
|
[`~ConfigMixin.from_config`] class method. |
|
|
|
Args: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory where the configuration JSON file is saved (will be created if it does not exist). |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. |
|
""" |
|
if os.path.isfile(save_directory): |
|
raise AssertionError( |
|
f"Provided path ({save_directory}) should be a directory, not a file" |
|
) |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
|
|
output_config_file = os.path.join(save_directory, self.config_name) |
|
|
|
config_dict = OmegaConf.to_container(self.cfg, resolve=True) |
|
for k in copy.deepcopy(config_dict).keys(): |
|
if k.startswith("pretrained"): |
|
config_dict.pop(k) |
|
config_dict.pop("weights") |
|
with open(output_config_file, "w", encoding="utf-8") as f: |
|
json.dump(config_dict, f, ensure_ascii=False, indent=4) |
|
|
|
print(f"Configuration saved in {output_config_file}") |
|
|