Spaces:
Running
Running
import torch | |
import gradio as gr | |
from PIL import Image | |
import qrcode | |
from diffusers import ( | |
StableDiffusionControlNetImg2ImgPipeline, | |
ControlNetModel, | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
DEISMultistepScheduler, | |
HeunDiscreteScheduler, | |
EulerDiscreteScheduler, | |
) | |
controlnet = ControlNetModel.from_pretrained( | |
"DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16 | |
) | |
pipe= StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
controlnet=controlnet, | |
use_safetensors=True, | |
torch_dtype=torch.float16, | |
).to("cuda") | |
SAMPLER_MAP={ | |
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"), | |
"DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True), | |
"Heun": lambda config: HeunDiscreteScheduler.from_config(config), | |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config), | |
"DDIM": lambda config: DDIMScheduler.from_config(config), | |
"DEIS": lambda config: DEISMultistepScheduler.from_config(config), | |
} | |
def inference( | |
qr_code_content: str, | |
prompt: str, | |
negative_prompt: str, | |
guidance_scale: float = 10.0, | |
controlnet_conditioning_scale: float = 2.0, | |
strength: float = 0.8, | |
seed: int = -1, | |
init_image: Image.Image | None = None, | |
qrcode_image: Image.Image | None = None, | |
sampler = "DPM++ Karras SDE", | |
): | |
if prompt is None or prompt == "": | |
raise gr.Error("Prompt is required") | |
if qrcode_image is None and qr_code_content == "": | |
raise gr.Error("QR Code Image or QR Code Content is required") | |
pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config) | |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator() | |
if qr_code_content != "" or qrcode_image.size == (1, 1): | |
qr = qrcode.QRCode( | |
version=1, | |
error_correction=qrcode.constants.ERROR_CORRECT_H, | |
box_size=10, | |
border=4, | |
) | |
qr.add_data(qr_code_content) | |
qr.make(fit=True) | |
qrcode_image = qr.make_image(fill_color="black", back_color="white") | |
qrcode_image = qrcode_image.resize((768, 768)) | |
else: | |
qrcode_image = qrcode_image.resize((768, 768)) | |
# hack due to gradio examples | |
init_image = qrcode_image | |
out = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=init_image, | |
control_image=qrcode_image, # type: ignore | |
width=768, # type: ignore | |
height=768, # type: ignore | |
guidance_scale=float(guidance_scale), | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale), # type: ignore | |
generator=generator, | |
strength=float(strength), | |
num_inference_steps=40, | |
) | |
return out.images[0] # type: ignore | |
def inference_ui_demo(): | |
return None | |
# https://www.kaggle.com/code/aisuko/text-to-image-qr-code-generator/notebook | |
# image=inference(qr_code_content="https://www.kaggle.com/aisuko", | |
# prompt="A sky view of a colorful lakes and rivers flowing through the mountains", | |
# negative_prompt="ugly, disfigured, low quality, blurry, nsfw", | |
# guidance_scale=7.5, | |
# controlnet_conditioning_scale=1.3, | |
# strength=0.9, | |
# seed=5392011833, | |
# init_image=None, | |
# qrcode_image=None, | |
# sampler="DPM++ Karras SDE") | |
with gr.Blocks() as blocks: | |
gr.Markdown( | |
""" | |
# QR Code Image to Image UI Demo | |
This code cannot be runable because of the low resource. So, it is aimed to show the the componnets of the UI only. | |
If you want to run the Code, please go to Kaggle <a href="https://www.kaggle.com/code/aisuko/text-to-image-qr-code-generator/notebook" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
qrcode_content=gr.Textbox( | |
label="QR Code Content", | |
info="QR Code Content or URL", | |
value="", | |
) | |
with gr.Accordion(label="QR Code Image (Optional)", open=False): | |
qr_code_image=gr.Image( | |
label="QR Code Image (Optional). Leave blank to automatically generate QR Code", | |
type="pil", | |
) | |
prompt=gr.Textbox( | |
label="Prompt", | |
info="Prompt that guides the generation towards", | |
) | |
negative_prompt=gr.Textbox( | |
label="Negative Prompt", | |
value="ugly, disfigured, low quality, blurry, nsfw", | |
) | |
use_qr_code_as_init_image=gr.Checkbox( | |
label="Use QR code as init image", | |
value=True, | |
interactive=False, | |
info="Whether init image should be QR code. Unclick to pass init image or generate init image with Stable Diffusion 1.5" | |
) | |
with gr.Accordion(label="Init Image (Optional)", open=False) as init_image_acc: | |
init_image=gr.Image( | |
label="Init Image (Optional). Leave blank to generate image with SD 1.5", | |
type="pil", | |
) | |
with gr.Accordion( | |
label="Params: The generated QR Code functionality is largely influenced by the parameters detailed below", | |
open=True,): | |
controlnet_conditioning_scale=gr.Slider( | |
minimum=0.0, | |
maximum=5.0, | |
step=0.1, | |
value=1.1, | |
label="Controlnet Conditioning Scale", | |
) | |
strength=gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.9, | |
label="Strength", | |
) | |
guidance_scale=gr.Slider( | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=7.5, | |
label="Guidance Scale", | |
) | |
sampler=gr.Dropdown( | |
choices=list(SAMPLER_MAP.keys()), | |
value="DPM++ Karras SDE", | |
label="Sampler" | |
) | |
seed=gr.Slider( | |
minimum=-1, | |
maximum=9999999999, | |
step=1, | |
value=2313123, | |
label="Seed", | |
randomize=True, | |
) | |
with gr.Row(): | |
btn=gr.Button("Run") | |
with gr.Column(): | |
result_image=gr.Image(label="Result Image") | |
btn.click( | |
inference_ui_demo, | |
inputs=[ | |
qrcode_content, | |
prompt, | |
negative_prompt, | |
guidance_scale, | |
controlnet_conditioning_scale, | |
strength, | |
seed, | |
init_image, | |
qr_code_image, | |
sampler, | |
], | |
outputs=[result_image], | |
) | |
blocks.queue(concurrency_count=1, max_size=2) | |
blocks.launch() |