Spaces:
Running
Running
Init commit
Browse filesSigned-off-by: Aisuko <urakiny@gmail.com>
- app.py +217 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
import qrcode
|
5 |
+
|
6 |
+
|
7 |
+
from diffusers import (
|
8 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
9 |
+
ControlNetModel,
|
10 |
+
DDIMScheduler,
|
11 |
+
DPMSolverMultistepScheduler,
|
12 |
+
DEISMultistepScheduler,
|
13 |
+
HeunDiscreteScheduler,
|
14 |
+
EulerDiscreteScheduler,
|
15 |
+
)
|
16 |
+
|
17 |
+
controlnet = ControlNetModel.from_pretrained(
|
18 |
+
"DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
|
19 |
+
)
|
20 |
+
|
21 |
+
pipe= StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
22 |
+
"runwayml/stable-diffusion-v1-5",
|
23 |
+
controlnet=controlnet,
|
24 |
+
use_safetensors=True,
|
25 |
+
torch_dtype=torch.float16,
|
26 |
+
).to("cuda")
|
27 |
+
|
28 |
+
|
29 |
+
SAMPLER_MAP={
|
30 |
+
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
|
31 |
+
"DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True),
|
32 |
+
"Heun": lambda config: HeunDiscreteScheduler.from_config(config),
|
33 |
+
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
34 |
+
"DDIM": lambda config: DDIMScheduler.from_config(config),
|
35 |
+
"DEIS": lambda config: DEISMultistepScheduler.from_config(config),
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
def inference(
|
40 |
+
qr_code_content: str,
|
41 |
+
prompt: str,
|
42 |
+
negative_prompt: str,
|
43 |
+
guidance_scale: float = 10.0,
|
44 |
+
controlnet_conditioning_scale: float = 2.0,
|
45 |
+
strength: float = 0.8,
|
46 |
+
seed: int = -1,
|
47 |
+
init_image: Image.Image | None = None,
|
48 |
+
qrcode_image: Image.Image | None = None,
|
49 |
+
sampler = "DPM++ Karras SDE",
|
50 |
+
):
|
51 |
+
if prompt is None or prompt == "":
|
52 |
+
raise gr.Error("Prompt is required")
|
53 |
+
|
54 |
+
if qrcode_image is None and qr_code_content == "":
|
55 |
+
raise gr.Error("QR Code Image or QR Code Content is required")
|
56 |
+
|
57 |
+
pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)
|
58 |
+
|
59 |
+
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
60 |
+
|
61 |
+
if qr_code_content != "" or qrcode_image.size == (1, 1):
|
62 |
+
qr = qrcode.QRCode(
|
63 |
+
version=1,
|
64 |
+
error_correction=qrcode.constants.ERROR_CORRECT_H,
|
65 |
+
box_size=10,
|
66 |
+
border=4,
|
67 |
+
)
|
68 |
+
qr.add_data(qr_code_content)
|
69 |
+
qr.make(fit=True)
|
70 |
+
|
71 |
+
qrcode_image = qr.make_image(fill_color="black", back_color="white")
|
72 |
+
qrcode_image = qrcode_image.resize((768, 768))
|
73 |
+
else:
|
74 |
+
qrcode_image = qrcode_image.resize((768, 768))
|
75 |
+
|
76 |
+
# hack due to gradio examples
|
77 |
+
init_image = qrcode_image
|
78 |
+
|
79 |
+
out = pipe(
|
80 |
+
prompt=prompt,
|
81 |
+
negative_prompt=negative_prompt,
|
82 |
+
image=init_image,
|
83 |
+
control_image=qrcode_image, # type: ignore
|
84 |
+
width=768, # type: ignore
|
85 |
+
height=768, # type: ignore
|
86 |
+
guidance_scale=float(guidance_scale),
|
87 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale), # type: ignore
|
88 |
+
generator=generator,
|
89 |
+
strength=float(strength),
|
90 |
+
num_inference_steps=40,
|
91 |
+
)
|
92 |
+
return out.images[0] # type: ignore
|
93 |
+
|
94 |
+
def inference_ui_demo():
|
95 |
+
return None
|
96 |
+
|
97 |
+
# https://www.kaggle.com/code/aisuko/text-to-image-qr-code-generator/notebook
|
98 |
+
# image=inference(qr_code_content="https://www.kaggle.com/aisuko",
|
99 |
+
# prompt="A sky view of a colorful lakes and rivers flowing through the mountains",
|
100 |
+
# negative_prompt="ugly, disfigured, low quality, blurry, nsfw",
|
101 |
+
# guidance_scale=7.5,
|
102 |
+
# controlnet_conditioning_scale=1.3,
|
103 |
+
# strength=0.9,
|
104 |
+
# seed=5392011833,
|
105 |
+
# init_image=None,
|
106 |
+
# qrcode_image=None,
|
107 |
+
# sampler="DPM++ Karras SDE")
|
108 |
+
|
109 |
+
with gr.Blocks() as blocks:
|
110 |
+
gr.Markdown(
|
111 |
+
"""
|
112 |
+
# QR Code Image to Image UI Demo
|
113 |
+
|
114 |
+
This code cannot be runable because of the low resource. So, it is aimed to show the the componnets of the UI only.
|
115 |
+
|
116 |
+
If you want to run the Code, please go to Kaggle <a href="https://www.kaggle.com/code/aisuko/text-to-image-qr-code-generator/notebook" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
|
117 |
+
"""
|
118 |
+
)
|
119 |
+
|
120 |
+
with gr.Row():
|
121 |
+
with gr.Column():
|
122 |
+
qrcode_content=gr.Textbox(
|
123 |
+
label="QR Code Content",
|
124 |
+
info="QR Code Content or URL",
|
125 |
+
value="",
|
126 |
+
)
|
127 |
+
with gr.Accordion(label="QR Code Image (Optional)", open=False):
|
128 |
+
qr_code_image=gr.Image(
|
129 |
+
label="QR Code Image (Optional). Leave blank to automatically generate QR Code",
|
130 |
+
type="pil",
|
131 |
+
)
|
132 |
+
|
133 |
+
prompt=gr.Textbox(
|
134 |
+
label="Prompt",
|
135 |
+
info="Prompt that guides the generation towards",
|
136 |
+
)
|
137 |
+
|
138 |
+
negative_prompt=gr.Textbox(
|
139 |
+
label="Negative Prompt",
|
140 |
+
value="ugly, disfigured, low quality, blurry, nsfw",
|
141 |
+
)
|
142 |
+
|
143 |
+
use_qr_code_as_init_image=gr.Checkbox(
|
144 |
+
label="Use QR code as init image",
|
145 |
+
value=True,
|
146 |
+
interactive=False,
|
147 |
+
info="Whether init image should be QR code. Unclick to pass init image or generate init image with Stable Diffusion 1.5"
|
148 |
+
)
|
149 |
+
|
150 |
+
with gr.Accordion(label="Init Image (Optional)", open=False) as init_image_acc:
|
151 |
+
init_image=gr.Image(
|
152 |
+
label="Init Image (Optional). Leave blank to generate image with SD 1.5",
|
153 |
+
type="pil",
|
154 |
+
)
|
155 |
+
|
156 |
+
with gr.Accordion(
|
157 |
+
label="Params: The generated QR Code functionality is largely influenced by the parameters detailed below",
|
158 |
+
open=True,):
|
159 |
+
|
160 |
+
controlnet_conditioning_scale=gr.Slider(
|
161 |
+
minimum=0.0,
|
162 |
+
maximum=5.0,
|
163 |
+
step=0.1,
|
164 |
+
value=1.1,
|
165 |
+
label="Controlnet Conditioning Scale",
|
166 |
+
)
|
167 |
+
strength=gr.Slider(
|
168 |
+
minimum=0.0,
|
169 |
+
maximum=1.0,
|
170 |
+
step=0.1,
|
171 |
+
value=0.9,
|
172 |
+
label="Strength",
|
173 |
+
)
|
174 |
+
guidance_scale=gr.Slider(
|
175 |
+
minimum=0.0,
|
176 |
+
maximum=10.0,
|
177 |
+
step=0.1,
|
178 |
+
value=7.5,
|
179 |
+
label="Guidance Scale",
|
180 |
+
)
|
181 |
+
sampler=gr.Dropdown(
|
182 |
+
choices=list(SAMPLER_MAP.keys()),
|
183 |
+
value="DPM++ Karras SDE",
|
184 |
+
label="Sampler"
|
185 |
+
)
|
186 |
+
seed=gr.Slider(
|
187 |
+
minimum=-1,
|
188 |
+
maximum=9999999999,
|
189 |
+
step=1,
|
190 |
+
value=2313123,
|
191 |
+
label="Seed",
|
192 |
+
randomize=True,
|
193 |
+
)
|
194 |
+
with gr.Row():
|
195 |
+
btn=gr.Button("Run")
|
196 |
+
with gr.Column():
|
197 |
+
result_image=gr.Image(label="Result Image")
|
198 |
+
|
199 |
+
btn.click(
|
200 |
+
inference_ui_demo,
|
201 |
+
inputs=[
|
202 |
+
qrcode_content,
|
203 |
+
prompt,
|
204 |
+
negative_prompt,
|
205 |
+
guidance_scale,
|
206 |
+
controlnet_conditioning_scale,
|
207 |
+
strength,
|
208 |
+
seed,
|
209 |
+
init_image,
|
210 |
+
qr_code_image,
|
211 |
+
sampler,
|
212 |
+
],
|
213 |
+
outputs=[result_image],
|
214 |
+
)
|
215 |
+
|
216 |
+
blocks.queue(concurrency_count=1, max_size=2)
|
217 |
+
blocks.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers==0.23.1
|
2 |
+
torch==2.1.1
|
3 |
+
gradio==4.7.1
|
4 |
+
Pillow==10.1.0
|
5 |
+
qrcode==7.4.2
|