|
import math
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
from modules.encodec import SConv1d
|
|
|
|
from . import commons
|
|
LRELU_SLOPE = 0.1
|
|
|
|
class LayerNorm(nn.Module):
|
|
def __init__(self, channels, eps=1e-5):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.eps = eps
|
|
|
|
self.gamma = nn.Parameter(torch.ones(channels))
|
|
self.beta = nn.Parameter(torch.zeros(channels))
|
|
|
|
def forward(self, x):
|
|
x = x.transpose(1, -1)
|
|
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
|
return x.transpose(1, -1)
|
|
|
|
|
|
class ConvReluNorm(nn.Module):
|
|
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.hidden_channels = hidden_channels
|
|
self.out_channels = out_channels
|
|
self.kernel_size = kernel_size
|
|
self.n_layers = n_layers
|
|
self.p_dropout = p_dropout
|
|
assert n_layers > 1, "Number of layers should be larger than 0."
|
|
|
|
self.conv_layers = nn.ModuleList()
|
|
self.norm_layers = nn.ModuleList()
|
|
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
|
|
self.norm_layers.append(LayerNorm(hidden_channels))
|
|
self.relu_drop = nn.Sequential(
|
|
nn.ReLU(),
|
|
nn.Dropout(p_dropout))
|
|
for _ in range(n_layers - 1):
|
|
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
|
|
self.norm_layers.append(LayerNorm(hidden_channels))
|
|
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
|
self.proj.weight.data.zero_()
|
|
self.proj.bias.data.zero_()
|
|
|
|
def forward(self, x, x_mask):
|
|
x_org = x
|
|
for i in range(self.n_layers):
|
|
x = self.conv_layers[i](x * x_mask)
|
|
x = self.norm_layers[i](x)
|
|
x = self.relu_drop(x)
|
|
x = x_org + self.proj(x)
|
|
return x * x_mask
|
|
|
|
|
|
class DDSConv(nn.Module):
|
|
"""
|
|
Dialted and Depth-Separable Convolution
|
|
"""
|
|
|
|
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.kernel_size = kernel_size
|
|
self.n_layers = n_layers
|
|
self.p_dropout = p_dropout
|
|
|
|
self.drop = nn.Dropout(p_dropout)
|
|
self.convs_sep = nn.ModuleList()
|
|
self.convs_1x1 = nn.ModuleList()
|
|
self.norms_1 = nn.ModuleList()
|
|
self.norms_2 = nn.ModuleList()
|
|
for i in range(n_layers):
|
|
dilation = kernel_size ** i
|
|
padding = (kernel_size * dilation - dilation) // 2
|
|
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
|
groups=channels, dilation=dilation, padding=padding
|
|
))
|
|
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
|
self.norms_1.append(LayerNorm(channels))
|
|
self.norms_2.append(LayerNorm(channels))
|
|
|
|
def forward(self, x, x_mask, g=None):
|
|
if g is not None:
|
|
x = x + g
|
|
for i in range(self.n_layers):
|
|
y = self.convs_sep[i](x * x_mask)
|
|
y = self.norms_1[i](y)
|
|
y = F.gelu(y)
|
|
y = self.convs_1x1[i](y)
|
|
y = self.norms_2[i](y)
|
|
y = F.gelu(y)
|
|
y = self.drop(y)
|
|
x = x + y
|
|
return x * x_mask
|
|
|
|
|
|
class WN(torch.nn.Module):
|
|
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0, causal=False):
|
|
super(WN, self).__init__()
|
|
conv1d_type = SConv1d
|
|
assert (kernel_size % 2 == 1)
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size,
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
self.gin_channels = gin_channels
|
|
self.p_dropout = p_dropout
|
|
|
|
self.in_layers = torch.nn.ModuleList()
|
|
self.res_skip_layers = torch.nn.ModuleList()
|
|
self.drop = nn.Dropout(p_dropout)
|
|
|
|
if gin_channels != 0:
|
|
self.cond_layer = conv1d_type(gin_channels, 2 * hidden_channels * n_layers, 1, norm='weight_norm')
|
|
|
|
for i in range(n_layers):
|
|
dilation = dilation_rate ** i
|
|
padding = int((kernel_size * dilation - dilation) / 2)
|
|
in_layer = conv1d_type(hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilation,
|
|
padding=padding, norm='weight_norm', causal=causal)
|
|
self.in_layers.append(in_layer)
|
|
|
|
|
|
if i < n_layers - 1:
|
|
res_skip_channels = 2 * hidden_channels
|
|
else:
|
|
res_skip_channels = hidden_channels
|
|
|
|
res_skip_layer = conv1d_type(hidden_channels, res_skip_channels, 1, norm='weight_norm', causal=causal)
|
|
self.res_skip_layers.append(res_skip_layer)
|
|
|
|
def forward(self, x, x_mask, g=None, **kwargs):
|
|
output = torch.zeros_like(x)
|
|
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
|
|
|
if g is not None:
|
|
g = self.cond_layer(g)
|
|
|
|
for i in range(self.n_layers):
|
|
x_in = self.in_layers[i](x)
|
|
if g is not None:
|
|
cond_offset = i * 2 * self.hidden_channels
|
|
g_l = g[:, cond_offset:cond_offset + 2 * self.hidden_channels, :]
|
|
else:
|
|
g_l = torch.zeros_like(x_in)
|
|
|
|
acts = commons.fused_add_tanh_sigmoid_multiply(
|
|
x_in,
|
|
g_l,
|
|
n_channels_tensor)
|
|
acts = self.drop(acts)
|
|
|
|
res_skip_acts = self.res_skip_layers[i](acts)
|
|
if i < self.n_layers - 1:
|
|
res_acts = res_skip_acts[:, :self.hidden_channels, :]
|
|
x = (x + res_acts) * x_mask
|
|
output = output + res_skip_acts[:, self.hidden_channels:, :]
|
|
else:
|
|
output = output + res_skip_acts
|
|
return output * x_mask
|
|
|
|
def remove_weight_norm(self):
|
|
if self.gin_channels != 0:
|
|
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
|
for l in self.in_layers:
|
|
torch.nn.utils.remove_weight_norm(l)
|
|
for l in self.res_skip_layers:
|
|
torch.nn.utils.remove_weight_norm(l) |