Spaces:
Running
on
Zero
Running
on
Zero
Update README.md
Browse files
README.md
CHANGED
@@ -1,141 +1,141 @@
|
|
1 |
-
---
|
2 |
-
title: Cinemo
|
3 |
-
app_file: demo.py
|
4 |
-
sdk: gradio
|
5 |
-
sdk_version: 4.
|
6 |
-
tags:
|
7 |
-
- Image-2-Video
|
8 |
-
- LLM
|
9 |
-
- Large Language Model
|
10 |
-
short_description: Multimodal Image-to-Video
|
11 |
-
emoji: π₯
|
12 |
-
colorFrom: green
|
13 |
-
colorTo: indigo
|
14 |
-
---
|
15 |
-
## Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models<br><sub>Official PyTorch Implementation</sub>
|
16 |
-
|
17 |
-
|
18 |
-
[![Arxiv](https://img.shields.io/badge/Arxiv-b31b1b.svg)](https://arxiv.org/abs/2407.15642)
|
19 |
-
[![Project Page](https://img.shields.io/badge/Project-Website-blue)](https://maxin-cn.github.io/cinemo_project/)
|
20 |
-
|
21 |
-
|
22 |
-
This repo contains pre-trained weights, and sampling code for our paper exploring image animation with motion diffusion models (Cinemo). You can find more visualizations on our [project page](https://maxin-cn.github.io/cinemo_project/).
|
23 |
-
|
24 |
-
In this project, we propose a novel method called Cinemo, which can perform motion-controllable image animation with strong consistency and smoothness. To improve motion smoothness, Cinemo learns the distribution of motion residuals, rather than directly generating subsequent frames. Additionally, a structural similarity index-based method is proposed to control the motion intensity. Furthermore, we propose a noise refinement technique based on discrete cosine transformation to ensure temporal consistency. These three methods help Cinemo generate highly consistent, smooth, and motion-controlled image animation results. Compared to previous methods, Cinemo offers simpler and more precise user control and better generative performance.
|
25 |
-
|
26 |
-
<div align="center">
|
27 |
-
<img src="visuals/pipeline.svg">
|
28 |
-
</div>
|
29 |
-
|
30 |
-
## News
|
31 |
-
|
32 |
-
- (π₯ New) Jul. 23, 2024. π₯ Our paper is released on [arxiv](https://arxiv.org/abs/2407.15642).
|
33 |
-
|
34 |
-
- (π₯ New) Jun. 2, 2024. π₯ The inference code is released. The checkpoint can be found [here](https://huggingface.co/maxin-cn/Cinemo/tree/main).
|
35 |
-
|
36 |
-
|
37 |
-
## Setup
|
38 |
-
|
39 |
-
First, download and set up the repo:
|
40 |
-
|
41 |
-
```bash
|
42 |
-
git clone https://github.com/maxin-cn/Cinemo
|
43 |
-
cd Cinemo
|
44 |
-
```
|
45 |
-
|
46 |
-
We provide an [`environment.yml`](environment.yml) file that can be used to create a Conda environment. If you only want
|
47 |
-
to run pre-trained models locally on CPU, you can remove the `cudatoolkit` and `pytorch-cuda` requirements from the file.
|
48 |
-
|
49 |
-
```bash
|
50 |
-
conda env create -f environment.yml
|
51 |
-
conda activate cinemo
|
52 |
-
```
|
53 |
-
|
54 |
-
|
55 |
-
## Animation
|
56 |
-
|
57 |
-
You can sample from our **pre-trained Cinemo models** with [`animation.py`](pipelines/animation.py). Weights for our pre-trained Cinemo model can be found [here](https://huggingface.co/maxin-cn/Cinemo/tree/main). The script has various arguments for adjusting sampling steps, changing the classifier-free guidance scale, etc:
|
58 |
-
|
59 |
-
```bash
|
60 |
-
bash pipelines/animation.sh
|
61 |
-
```
|
62 |
-
|
63 |
-
All related checkpoints will download automatically and then you will get the following results,
|
64 |
-
|
65 |
-
<table style="width:100%; text-align:center;">
|
66 |
-
<tr>
|
67 |
-
<td align="center">Input image</td>
|
68 |
-
<td align="center">Output video</td>
|
69 |
-
<td align="center">Input image</td>
|
70 |
-
<td align="center">Output video</td>
|
71 |
-
</tr>
|
72 |
-
<tr>
|
73 |
-
<td align="center"><img src="visuals/animations/people_walking/0.jpg" width="100%"></td>
|
74 |
-
<td align="center"><img src="visuals/animations/people_walking/people_walking.gif" width="100%"></td>
|
75 |
-
<td align="center"><img src="visuals/animations/sea_swell/0.jpg" width="100%"></td>
|
76 |
-
<td align="center"><img src="visuals/animations/sea_swell/sea_swell.gif" width="100%"></td>
|
77 |
-
</tr>
|
78 |
-
<tr>
|
79 |
-
<td align="center" colspan="2">"People Walking"</td>
|
80 |
-
<td align="center" colspan="2">"Sea Swell"</td>
|
81 |
-
</tr>
|
82 |
-
<tr>
|
83 |
-
<td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/0.jpg" width="100%"></td>
|
84 |
-
<td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/girl_dancing_under_the_stars.gif" width="100%"></td>
|
85 |
-
<td align="center"><img src="visuals/animations/dragon_glowing_eyes/0.jpg" width="100%"></td>
|
86 |
-
<td align="center"><img src="visuals/animations/dragon_glowing_eyes/dragon_glowing_eyes.gif" width="100%"></td>
|
87 |
-
</tr>
|
88 |
-
<tr>
|
89 |
-
<td align="center" colspan="2">"Girl Dancing under the Stars"</td>
|
90 |
-
<td align="center" colspan="2">"Dragon Glowing Eyes"</td>
|
91 |
-
</tr>
|
92 |
-
|
93 |
-
</table>
|
94 |
-
|
95 |
-
|
96 |
-
## Other Applications
|
97 |
-
|
98 |
-
You can also utilize Cinemo for other applications, such as motion transfer and video editing:
|
99 |
-
|
100 |
-
```bash
|
101 |
-
bash pipelines/video_editing.sh
|
102 |
-
```
|
103 |
-
|
104 |
-
All related checkpoints will download automatically and you will get the following results,
|
105 |
-
|
106 |
-
<table style="width:100%; text-align:center;">
|
107 |
-
<tr>
|
108 |
-
<td align="center">Input video</td>
|
109 |
-
<td align="center">First frame</td>
|
110 |
-
<td align="center">Edited first frame</td>
|
111 |
-
<td align="center">Output video</td>
|
112 |
-
</tr>
|
113 |
-
<tr>
|
114 |
-
<td align="center"><img src="visuals/video_editing/origin/a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td>
|
115 |
-
<td align="center"><img src="visuals/video_editing/origin/0.jpg" width="100%"></td>
|
116 |
-
<td align="center"><img src="visuals/video_editing/edit/0.jpg" width="100%"></td>
|
117 |
-
<td align="center"><img src="visuals/video_editing/edit/editing_a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td>
|
118 |
-
</tr>
|
119 |
-
|
120 |
-
</table>
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
## Citation
|
125 |
-
If you find this work useful for your research, please consider citing it.
|
126 |
-
```bibtex
|
127 |
-
@article{ma2024cinemo,
|
128 |
-
title={Cinemo: Latent Diffusion Transformer for Video Generation},
|
129 |
-
author={Ma, Xin and Wang, Yaohui and Jia, Gengyun and Chen, Xinyuan and Li, Yuan-Fang and Chen, Cunjian and Qiao, Yu},
|
130 |
-
journal={arXiv preprint arXiv:2407.15642},
|
131 |
-
year={2024}
|
132 |
-
}
|
133 |
-
```
|
134 |
-
|
135 |
-
|
136 |
-
## Acknowledgments
|
137 |
-
Cinemo has been greatly inspired by the following amazing works and teams: [LaVie](https://github.com/Vchitect/LaVie) and [SEINE](https://github.com/Vchitect/SEINE), we thank all the contributors for open-sourcing.
|
138 |
-
|
139 |
-
|
140 |
-
## License
|
141 |
The code and model weights are licensed under [LICENSE](LICENSE).
|
|
|
1 |
+
---
|
2 |
+
title: Cinemo
|
3 |
+
app_file: demo.py
|
4 |
+
sdk: gradio
|
5 |
+
sdk_version: 4.42.0
|
6 |
+
tags:
|
7 |
+
- Image-2-Video
|
8 |
+
- LLM
|
9 |
+
- Large Language Model
|
10 |
+
short_description: Multimodal Image-to-Video
|
11 |
+
emoji: π₯
|
12 |
+
colorFrom: green
|
13 |
+
colorTo: indigo
|
14 |
+
---
|
15 |
+
## Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models<br><sub>Official PyTorch Implementation</sub>
|
16 |
+
|
17 |
+
|
18 |
+
[![Arxiv](https://img.shields.io/badge/Arxiv-b31b1b.svg)](https://arxiv.org/abs/2407.15642)
|
19 |
+
[![Project Page](https://img.shields.io/badge/Project-Website-blue)](https://maxin-cn.github.io/cinemo_project/)
|
20 |
+
|
21 |
+
|
22 |
+
This repo contains pre-trained weights, and sampling code for our paper exploring image animation with motion diffusion models (Cinemo). You can find more visualizations on our [project page](https://maxin-cn.github.io/cinemo_project/).
|
23 |
+
|
24 |
+
In this project, we propose a novel method called Cinemo, which can perform motion-controllable image animation with strong consistency and smoothness. To improve motion smoothness, Cinemo learns the distribution of motion residuals, rather than directly generating subsequent frames. Additionally, a structural similarity index-based method is proposed to control the motion intensity. Furthermore, we propose a noise refinement technique based on discrete cosine transformation to ensure temporal consistency. These three methods help Cinemo generate highly consistent, smooth, and motion-controlled image animation results. Compared to previous methods, Cinemo offers simpler and more precise user control and better generative performance.
|
25 |
+
|
26 |
+
<div align="center">
|
27 |
+
<img src="visuals/pipeline.svg">
|
28 |
+
</div>
|
29 |
+
|
30 |
+
## News
|
31 |
+
|
32 |
+
- (π₯ New) Jul. 23, 2024. π₯ Our paper is released on [arxiv](https://arxiv.org/abs/2407.15642).
|
33 |
+
|
34 |
+
- (π₯ New) Jun. 2, 2024. π₯ The inference code is released. The checkpoint can be found [here](https://huggingface.co/maxin-cn/Cinemo/tree/main).
|
35 |
+
|
36 |
+
|
37 |
+
## Setup
|
38 |
+
|
39 |
+
First, download and set up the repo:
|
40 |
+
|
41 |
+
```bash
|
42 |
+
git clone https://github.com/maxin-cn/Cinemo
|
43 |
+
cd Cinemo
|
44 |
+
```
|
45 |
+
|
46 |
+
We provide an [`environment.yml`](environment.yml) file that can be used to create a Conda environment. If you only want
|
47 |
+
to run pre-trained models locally on CPU, you can remove the `cudatoolkit` and `pytorch-cuda` requirements from the file.
|
48 |
+
|
49 |
+
```bash
|
50 |
+
conda env create -f environment.yml
|
51 |
+
conda activate cinemo
|
52 |
+
```
|
53 |
+
|
54 |
+
|
55 |
+
## Animation
|
56 |
+
|
57 |
+
You can sample from our **pre-trained Cinemo models** with [`animation.py`](pipelines/animation.py). Weights for our pre-trained Cinemo model can be found [here](https://huggingface.co/maxin-cn/Cinemo/tree/main). The script has various arguments for adjusting sampling steps, changing the classifier-free guidance scale, etc:
|
58 |
+
|
59 |
+
```bash
|
60 |
+
bash pipelines/animation.sh
|
61 |
+
```
|
62 |
+
|
63 |
+
All related checkpoints will download automatically and then you will get the following results,
|
64 |
+
|
65 |
+
<table style="width:100%; text-align:center;">
|
66 |
+
<tr>
|
67 |
+
<td align="center">Input image</td>
|
68 |
+
<td align="center">Output video</td>
|
69 |
+
<td align="center">Input image</td>
|
70 |
+
<td align="center">Output video</td>
|
71 |
+
</tr>
|
72 |
+
<tr>
|
73 |
+
<td align="center"><img src="visuals/animations/people_walking/0.jpg" width="100%"></td>
|
74 |
+
<td align="center"><img src="visuals/animations/people_walking/people_walking.gif" width="100%"></td>
|
75 |
+
<td align="center"><img src="visuals/animations/sea_swell/0.jpg" width="100%"></td>
|
76 |
+
<td align="center"><img src="visuals/animations/sea_swell/sea_swell.gif" width="100%"></td>
|
77 |
+
</tr>
|
78 |
+
<tr>
|
79 |
+
<td align="center" colspan="2">"People Walking"</td>
|
80 |
+
<td align="center" colspan="2">"Sea Swell"</td>
|
81 |
+
</tr>
|
82 |
+
<tr>
|
83 |
+
<td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/0.jpg" width="100%"></td>
|
84 |
+
<td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/girl_dancing_under_the_stars.gif" width="100%"></td>
|
85 |
+
<td align="center"><img src="visuals/animations/dragon_glowing_eyes/0.jpg" width="100%"></td>
|
86 |
+
<td align="center"><img src="visuals/animations/dragon_glowing_eyes/dragon_glowing_eyes.gif" width="100%"></td>
|
87 |
+
</tr>
|
88 |
+
<tr>
|
89 |
+
<td align="center" colspan="2">"Girl Dancing under the Stars"</td>
|
90 |
+
<td align="center" colspan="2">"Dragon Glowing Eyes"</td>
|
91 |
+
</tr>
|
92 |
+
|
93 |
+
</table>
|
94 |
+
|
95 |
+
|
96 |
+
## Other Applications
|
97 |
+
|
98 |
+
You can also utilize Cinemo for other applications, such as motion transfer and video editing:
|
99 |
+
|
100 |
+
```bash
|
101 |
+
bash pipelines/video_editing.sh
|
102 |
+
```
|
103 |
+
|
104 |
+
All related checkpoints will download automatically and you will get the following results,
|
105 |
+
|
106 |
+
<table style="width:100%; text-align:center;">
|
107 |
+
<tr>
|
108 |
+
<td align="center">Input video</td>
|
109 |
+
<td align="center">First frame</td>
|
110 |
+
<td align="center">Edited first frame</td>
|
111 |
+
<td align="center">Output video</td>
|
112 |
+
</tr>
|
113 |
+
<tr>
|
114 |
+
<td align="center"><img src="visuals/video_editing/origin/a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td>
|
115 |
+
<td align="center"><img src="visuals/video_editing/origin/0.jpg" width="100%"></td>
|
116 |
+
<td align="center"><img src="visuals/video_editing/edit/0.jpg" width="100%"></td>
|
117 |
+
<td align="center"><img src="visuals/video_editing/edit/editing_a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td>
|
118 |
+
</tr>
|
119 |
+
|
120 |
+
</table>
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
## Citation
|
125 |
+
If you find this work useful for your research, please consider citing it.
|
126 |
+
```bibtex
|
127 |
+
@article{ma2024cinemo,
|
128 |
+
title={Cinemo: Latent Diffusion Transformer for Video Generation},
|
129 |
+
author={Ma, Xin and Wang, Yaohui and Jia, Gengyun and Chen, Xinyuan and Li, Yuan-Fang and Chen, Cunjian and Qiao, Yu},
|
130 |
+
journal={arXiv preprint arXiv:2407.15642},
|
131 |
+
year={2024}
|
132 |
+
}
|
133 |
+
```
|
134 |
+
|
135 |
+
|
136 |
+
## Acknowledgments
|
137 |
+
Cinemo has been greatly inspired by the following amazing works and teams: [LaVie](https://github.com/Vchitect/LaVie) and [SEINE](https://github.com/Vchitect/SEINE), we thank all the contributors for open-sourcing.
|
138 |
+
|
139 |
+
|
140 |
+
## License
|
141 |
The code and model weights are licensed under [LICENSE](LICENSE).
|