Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| import numpy as np | |
| import PIL.Image | |
| from PIL import Image | |
| import random | |
| from diffusers import StableDiffusionXLPipeline | |
| from diffusers import EulerAncestralDiscreteScheduler | |
| import torch | |
| from compel import Compel, ReturnedEmbeddingsType | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # Make sure to use torch.float16 consistently throughout the pipeline | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "votepurchase/waiREALCN_v14", | |
| torch_dtype=torch.float16, | |
| variant="fp16", # Explicitly use fp16 variant | |
| use_safetensors=True # Use safetensors if available | |
| ) | |
| pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
| pipe.to(device) | |
| # Force all components to use the same dtype | |
| pipe.text_encoder.to(torch.float16) | |
| pipe.text_encoder_2.to(torch.float16) | |
| pipe.vae.to(torch.float16) | |
| pipe.unet.to(torch.float16) | |
| # 追加: Initialize Compel for long prompt processing | |
| compel = Compel( | |
| tokenizer=[pipe.tokenizer, pipe.tokenizer_2], | |
| text_encoder=[pipe.text_encoder, pipe.text_encoder_2], | |
| returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, | |
| requires_pooled=[False, True], | |
| truncate_long_prompts=False | |
| ) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1216 | |
| # 追加: Simple long prompt processing function | |
| def process_long_prompt(prompt, negative_prompt=""): | |
| """Simple long prompt processing using Compel""" | |
| try: | |
| conditioning, pooled = compel([prompt, negative_prompt]) | |
| return conditioning, pooled | |
| except Exception as e: | |
| print(f"Long prompt processing failed: {e}, falling back to standard processing") | |
| return None, None | |
| def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
| # 変更: Remove the 60-word limit warning and add long prompt check | |
| use_long_prompt = len(prompt.split()) > 60 or len(prompt) > 300 | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| try: | |
| # 追加: Try long prompt processing first if prompt is long | |
| if use_long_prompt: | |
| print("Using long prompt processing...") | |
| conditioning, pooled = process_long_prompt(prompt, negative_prompt) | |
| if conditioning is not None: | |
| output_image = pipe( | |
| prompt_embeds=conditioning[0:1], | |
| pooled_prompt_embeds=pooled[0:1], | |
| negative_prompt_embeds=conditioning[1:2], | |
| negative_pooled_prompt_embeds=pooled[1:2], | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator | |
| ).images[0] | |
| return output_image | |
| # Fall back to standard processing | |
| output_image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator | |
| ).images[0] | |
| return output_image | |
| except RuntimeError as e: | |
| print(f"Error during generation: {e}") | |
| # Return a blank image with error message | |
| error_img = Image.new('RGB', (width, height), color=(0, 0, 0)) | |
| return error_img | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt (long prompts are automatically supported)", # 変更: Updated placeholder | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn" | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=20.0, | |
| step=0.1, | |
| value=7, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=28, | |
| step=1, | |
| value=28, | |
| ) | |
| run_button.click( | |
| fn=infer, | |
| inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
| outputs=[result] | |
| ) | |
| demo.queue().launch() | |