Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
from pathlib import Path | |
import einops | |
import torch | |
from omegaconf import OmegaConf | |
from timm.layers import trunc_normal_ | |
from torch import nn | |
from mmaudio.ext.synchformer.utils import check_if_file_exists_else_download | |
from mmaudio.ext.synchformer.video_model_builder import VisionTransformer | |
FILE2URL = { | |
# cfg | |
'motionformer_224_16x4.yaml': | |
'https://raw.githubusercontent.com/facebookresearch/Motionformer/bf43d50/configs/SSV2/motionformer_224_16x4.yaml', | |
'joint_224_16x4.yaml': | |
'https://raw.githubusercontent.com/facebookresearch/Motionformer/bf43d50/configs/SSV2/joint_224_16x4.yaml', | |
'divided_224_16x4.yaml': | |
'https://raw.githubusercontent.com/facebookresearch/Motionformer/bf43d50/configs/SSV2/divided_224_16x4.yaml', | |
# ckpt | |
'ssv2_motionformer_224_16x4.pyth': | |
'https://dl.fbaipublicfiles.com/motionformer/ssv2_motionformer_224_16x4.pyth', | |
'ssv2_joint_224_16x4.pyth': | |
'https://dl.fbaipublicfiles.com/motionformer/ssv2_joint_224_16x4.pyth', | |
'ssv2_divided_224_16x4.pyth': | |
'https://dl.fbaipublicfiles.com/motionformer/ssv2_divided_224_16x4.pyth', | |
} | |
class MotionFormer(VisionTransformer): | |
''' This class serves three puposes: | |
1. Renames the class to MotionFormer. | |
2. Downloads the cfg from the original repo and patches it if needed. | |
3. Takes care of feature extraction by redefining .forward() | |
- if `extract_features=True` and `factorize_space_time=False`, | |
the output is of shape (B, T, D) where T = 1 + (224 // 16) * (224 // 16) * 8 | |
- if `extract_features=True` and `factorize_space_time=True`, the output is of shape (B*S, D) | |
and spatial and temporal transformer encoder layers are used. | |
- if `extract_features=True` and `factorize_space_time=True` as well as `add_global_repr=True` | |
the output is of shape (B, D) and spatial and temporal transformer encoder layers | |
are used as well as the global representation is extracted from segments (extra pos emb | |
is added). | |
''' | |
def __init__( | |
self, | |
extract_features: bool = False, | |
ckpt_path: str = None, | |
factorize_space_time: bool = None, | |
agg_space_module: str = None, | |
agg_time_module: str = None, | |
add_global_repr: bool = True, | |
agg_segments_module: str = None, | |
max_segments: int = None, | |
): | |
self.extract_features = extract_features | |
self.ckpt_path = ckpt_path | |
self.factorize_space_time = factorize_space_time | |
if self.ckpt_path is not None: | |
check_if_file_exists_else_download(self.ckpt_path, FILE2URL) | |
ckpt = torch.load(self.ckpt_path, map_location='cpu') | |
mformer_ckpt2cfg = { | |
'ssv2_motionformer_224_16x4.pyth': 'motionformer_224_16x4.yaml', | |
'ssv2_joint_224_16x4.pyth': 'joint_224_16x4.yaml', | |
'ssv2_divided_224_16x4.pyth': 'divided_224_16x4.yaml', | |
} | |
# init from motionformer ckpt or from our Stage I ckpt | |
# depending on whether the feat extractor was pre-trained on AVCLIPMoCo or not, we need to | |
# load the state dict differently | |
was_pt_on_avclip = self.ckpt_path.endswith( | |
'.pt') # checks if it is a stage I ckpt (FIXME: a bit generic) | |
if self.ckpt_path.endswith(tuple(mformer_ckpt2cfg.keys())): | |
cfg_fname = mformer_ckpt2cfg[Path(self.ckpt_path).name] | |
elif was_pt_on_avclip: | |
# TODO: this is a hack, we should be able to get the cfg from the ckpt (earlier ckpt didn't have it) | |
s1_cfg = ckpt.get('args', None) # Stage I cfg | |
if s1_cfg is not None: | |
s1_vfeat_extractor_ckpt_path = s1_cfg.model.params.vfeat_extractor.params.ckpt_path | |
# if the stage I ckpt was initialized from a motionformer ckpt or train from scratch | |
if s1_vfeat_extractor_ckpt_path is not None: | |
cfg_fname = mformer_ckpt2cfg[Path(s1_vfeat_extractor_ckpt_path).name] | |
else: | |
cfg_fname = 'divided_224_16x4.yaml' | |
else: | |
cfg_fname = 'divided_224_16x4.yaml' | |
else: | |
raise ValueError(f'ckpt_path {self.ckpt_path} is not supported.') | |
else: | |
was_pt_on_avclip = False | |
cfg_fname = 'divided_224_16x4.yaml' | |
# logging.info(f'No ckpt_path provided, using {cfg_fname} config.') | |
if cfg_fname in ['motionformer_224_16x4.yaml', 'divided_224_16x4.yaml']: | |
pos_emb_type = 'separate' | |
elif cfg_fname == 'joint_224_16x4.yaml': | |
pos_emb_type = 'joint' | |
self.mformer_cfg_path = Path(__file__).absolute().parent / cfg_fname | |
check_if_file_exists_else_download(self.mformer_cfg_path, FILE2URL) | |
mformer_cfg = OmegaConf.load(self.mformer_cfg_path) | |
logging.info(f'Loading MotionFormer config from {self.mformer_cfg_path.absolute()}') | |
# patch the cfg (from the default cfg defined in the repo `Motionformer/slowfast/config/defaults.py`) | |
mformer_cfg.VIT.ATTN_DROPOUT = 0.0 | |
mformer_cfg.VIT.POS_EMBED = pos_emb_type | |
mformer_cfg.VIT.USE_ORIGINAL_TRAJ_ATTN_CODE = True | |
mformer_cfg.VIT.APPROX_ATTN_TYPE = 'none' # guessing | |
mformer_cfg.VIT.APPROX_ATTN_DIM = 64 # from ckpt['cfg'] | |
# finally init VisionTransformer with the cfg | |
super().__init__(mformer_cfg) | |
# load the ckpt now if ckpt is provided and not from AVCLIPMoCo-pretrained ckpt | |
if (self.ckpt_path is not None) and (not was_pt_on_avclip): | |
_ckpt_load_status = self.load_state_dict(ckpt['model_state'], strict=False) | |
if len(_ckpt_load_status.missing_keys) > 0 or len( | |
_ckpt_load_status.unexpected_keys) > 0: | |
logging.warning(f'Loading exact vfeat_extractor ckpt from {self.ckpt_path} failed.' \ | |
f'Missing keys: {_ckpt_load_status.missing_keys}, ' \ | |
f'Unexpected keys: {_ckpt_load_status.unexpected_keys}') | |
else: | |
logging.info(f'Loading vfeat_extractor ckpt from {self.ckpt_path} succeeded.') | |
if self.extract_features: | |
assert isinstance(self.norm, | |
nn.LayerNorm), 'early x[:, 1:, :] may not be safe for per-tr weights' | |
# pre-logits are Sequential(nn.Linear(emb, emd), act) and `act` is tanh but see the logger | |
self.pre_logits = nn.Identity() | |
# we don't need the classification head (saving memory) | |
self.head = nn.Identity() | |
self.head_drop = nn.Identity() | |
# avoiding code duplication (used only if agg_*_module is TransformerEncoderLayer) | |
transf_enc_layer_kwargs = dict( | |
d_model=self.embed_dim, | |
nhead=self.num_heads, | |
activation=nn.GELU(), | |
batch_first=True, | |
dim_feedforward=self.mlp_ratio * self.embed_dim, | |
dropout=self.drop_rate, | |
layer_norm_eps=1e-6, | |
norm_first=True, | |
) | |
# define adapters if needed | |
if self.factorize_space_time: | |
if agg_space_module == 'TransformerEncoderLayer': | |
self.spatial_attn_agg = SpatialTransformerEncoderLayer( | |
**transf_enc_layer_kwargs) | |
elif agg_space_module == 'AveragePooling': | |
self.spatial_attn_agg = AveragePooling(avg_pattern='BS D t h w -> BS D t', | |
then_permute_pattern='BS D t -> BS t D') | |
if agg_time_module == 'TransformerEncoderLayer': | |
self.temp_attn_agg = TemporalTransformerEncoderLayer(**transf_enc_layer_kwargs) | |
elif agg_time_module == 'AveragePooling': | |
self.temp_attn_agg = AveragePooling(avg_pattern='BS t D -> BS D') | |
elif 'Identity' in agg_time_module: | |
self.temp_attn_agg = nn.Identity() | |
# define a global aggregation layer (aggregarate over segments) | |
self.add_global_repr = add_global_repr | |
if add_global_repr: | |
if agg_segments_module == 'TransformerEncoderLayer': | |
# we can reuse the same layer as for temporal factorization (B, dim_to_agg, D) -> (B, D) | |
# we need to add pos emb (PE) because previously we added the same PE for each segment | |
pos_max_len = max_segments if max_segments is not None else 16 # 16 = 10sec//0.64sec + 1 | |
self.global_attn_agg = TemporalTransformerEncoderLayer( | |
add_pos_emb=True, | |
pos_emb_drop=mformer_cfg.VIT.POS_DROPOUT, | |
pos_max_len=pos_max_len, | |
**transf_enc_layer_kwargs) | |
elif agg_segments_module == 'AveragePooling': | |
self.global_attn_agg = AveragePooling(avg_pattern='B S D -> B D') | |
if was_pt_on_avclip: | |
# we need to filter out the state_dict of the AVCLIP model (has both A and V extractors) | |
# and keep only the state_dict of the feat extractor | |
ckpt_weights = dict() | |
for k, v in ckpt['state_dict'].items(): | |
if k.startswith(('module.v_encoder.', 'v_encoder.')): | |
k = k.replace('module.', '').replace('v_encoder.', '') | |
ckpt_weights[k] = v | |
_load_status = self.load_state_dict(ckpt_weights, strict=False) | |
if len(_load_status.missing_keys) > 0 or len(_load_status.unexpected_keys) > 0: | |
logging.warning(f'Loading exact vfeat_extractor ckpt from {self.ckpt_path} failed. \n' \ | |
f'Missing keys ({len(_load_status.missing_keys)}): ' \ | |
f'{_load_status.missing_keys}, \n' \ | |
f'Unexpected keys ({len(_load_status.unexpected_keys)}): ' \ | |
f'{_load_status.unexpected_keys} \n' \ | |
f'temp_attn_agg are expected to be missing if ckpt was pt contrastively.') | |
else: | |
logging.info(f'Loading vfeat_extractor ckpt from {self.ckpt_path} succeeded.') | |
# patch_embed is not used in MotionFormer, only patch_embed_3d, because cfg.VIT.PATCH_SIZE_TEMP > 1 | |
# but it used to calculate the number of patches, so we need to set keep it | |
self.patch_embed.requires_grad_(False) | |
def forward(self, x): | |
''' | |
x is of shape (B, S, C, T, H, W) where S is the number of segments. | |
''' | |
# Batch, Segments, Channels, T=frames, Height, Width | |
B, S, C, T, H, W = x.shape | |
# Motionformer expects a tensor of shape (1, B, C, T, H, W). | |
# The first dimension (1) is a dummy dimension to make the input tensor and won't be used: | |
# see `video_model_builder.video_input`. | |
# x = x.unsqueeze(0) # (1, B, S, C, T, H, W) | |
orig_shape = (B, S, C, T, H, W) | |
x = x.view(B * S, C, T, H, W) # flatten batch and segments | |
x = self.forward_segments(x, orig_shape=orig_shape) | |
# unpack the segments (using rest dimensions to support different shapes e.g. (BS, D) or (BS, t, D)) | |
x = x.view(B, S, *x.shape[1:]) | |
# x is now of shape (B*S, D) or (B*S, t, D) if `self.temp_attn_agg` is `Identity` | |
return x # x is (B, S, ...) | |
def forward_segments(self, x, orig_shape: tuple) -> torch.Tensor: | |
'''x is of shape (1, BS, C, T, H, W) where S is the number of segments.''' | |
x, x_mask = self.forward_features(x) | |
assert self.extract_features | |
# (BS, T, D) where T = 1 + (224 // 16) * (224 // 16) * 8 | |
x = x[:, | |
1:, :] # without the CLS token for efficiency (should be safe for LayerNorm and FC) | |
x = self.norm(x) | |
x = self.pre_logits(x) | |
if self.factorize_space_time: | |
x = self.restore_spatio_temp_dims(x, orig_shape) # (B*S, D, t, h, w) <- (B*S, t*h*w, D) | |
x = self.spatial_attn_agg(x, x_mask) # (B*S, t, D) | |
x = self.temp_attn_agg( | |
x) # (B*S, D) or (BS, t, D) if `self.temp_attn_agg` is `Identity` | |
return x | |
def restore_spatio_temp_dims(self, feats: torch.Tensor, orig_shape: tuple) -> torch.Tensor: | |
''' | |
feats are of shape (B*S, T, D) where T = 1 + (224 // 16) * (224 // 16) * 8 | |
Our goal is to make them of shape (B*S, t, h, w, D) where h, w are the spatial dimensions. | |
From `self.patch_embed_3d`, it follows that we could reshape feats with: | |
`feats.transpose(1, 2).view(B*S, D, t, h, w)` | |
''' | |
B, S, C, T, H, W = orig_shape | |
D = self.embed_dim | |
# num patches in each dimension | |
t = T // self.patch_embed_3d.z_block_size | |
h = self.patch_embed_3d.height | |
w = self.patch_embed_3d.width | |
feats = feats.permute(0, 2, 1) # (B*S, D, T) | |
feats = feats.view(B * S, D, t, h, w) # (B*S, D, t, h, w) | |
return feats | |
class BaseEncoderLayer(nn.TransformerEncoderLayer): | |
''' | |
This is a wrapper around nn.TransformerEncoderLayer that adds a CLS token | |
to the sequence and outputs the CLS token's representation. | |
This base class parents both SpatialEncoderLayer and TemporalEncoderLayer for the RGB stream | |
and the FrequencyEncoderLayer and TemporalEncoderLayer for the audio stream stream. | |
We also, optionally, add a positional embedding to the input sequence which | |
allows to reuse it for global aggregation (of segments) for both streams. | |
''' | |
def __init__(self, | |
add_pos_emb: bool = False, | |
pos_emb_drop: float = None, | |
pos_max_len: int = None, | |
*args_transformer_enc, | |
**kwargs_transformer_enc): | |
super().__init__(*args_transformer_enc, **kwargs_transformer_enc) | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.self_attn.embed_dim)) | |
trunc_normal_(self.cls_token, std=.02) | |
# add positional embedding | |
self.add_pos_emb = add_pos_emb | |
if add_pos_emb: | |
self.pos_max_len = 1 + pos_max_len # +1 (for CLS) | |
self.pos_emb = nn.Parameter(torch.zeros(1, self.pos_max_len, self.self_attn.embed_dim)) | |
self.pos_drop = nn.Dropout(pos_emb_drop) | |
trunc_normal_(self.pos_emb, std=.02) | |
self.apply(self._init_weights) | |
def forward(self, x: torch.Tensor, x_mask: torch.Tensor = None): | |
''' x is of shape (B, N, D); if provided x_mask is of shape (B, N)''' | |
batch_dim = x.shape[0] | |
# add CLS token | |
cls_tokens = self.cls_token.expand(batch_dim, -1, -1) # expanding to match batch dimension | |
x = torch.cat((cls_tokens, x), dim=-2) # (batch_dim, 1+seq_len, D) | |
if x_mask is not None: | |
cls_mask = torch.ones((batch_dim, 1), dtype=torch.bool, | |
device=x_mask.device) # 1=keep; 0=mask | |
x_mask_w_cls = torch.cat((cls_mask, x_mask), dim=-1) # (batch_dim, 1+seq_len) | |
B, N = x_mask_w_cls.shape | |
# torch expects (N, N) or (B*num_heads, N, N) mask (sadness ahead); torch masks | |
x_mask_w_cls = x_mask_w_cls.reshape(B, 1, 1, N)\ | |
.expand(-1, self.self_attn.num_heads, N, -1)\ | |
.reshape(B * self.self_attn.num_heads, N, N) | |
assert x_mask_w_cls.dtype == x_mask_w_cls.bool().dtype, 'x_mask_w_cls.dtype != bool' | |
x_mask_w_cls = ~x_mask_w_cls # invert mask (1=mask) | |
else: | |
x_mask_w_cls = None | |
# add positional embedding | |
if self.add_pos_emb: | |
seq_len = x.shape[ | |
1] # (don't even think about moving it before the CLS token concatenation) | |
assert seq_len <= self.pos_max_len, f'Seq len ({seq_len}) > pos_max_len ({self.pos_max_len})' | |
x = x + self.pos_emb[:, :seq_len, :] | |
x = self.pos_drop(x) | |
# apply encoder layer (calls nn.TransformerEncoderLayer.forward); | |
x = super().forward(src=x, src_mask=x_mask_w_cls) # (batch_dim, 1+seq_len, D) | |
# CLS token is expected to hold spatial information for each frame | |
x = x[:, 0, :] # (batch_dim, D) | |
return x | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {'cls_token', 'pos_emb'} | |
class SpatialTransformerEncoderLayer(BaseEncoderLayer): | |
''' Aggregates spatial dimensions by applying attention individually to each frame. ''' | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def forward(self, x: torch.Tensor, x_mask: torch.Tensor = None) -> torch.Tensor: | |
''' x is of shape (B*S, D, t, h, w) where S is the number of segments. | |
if specified x_mask (B*S, t, h, w), 0=masked, 1=kept | |
Returns a tensor of shape (B*S, t, D) pooling spatial information for each frame. ''' | |
BS, D, t, h, w = x.shape | |
# time as a batch dimension and flatten spatial dimensions as sequence | |
x = einops.rearrange(x, 'BS D t h w -> (BS t) (h w) D') | |
# similar to mask | |
if x_mask is not None: | |
x_mask = einops.rearrange(x_mask, 'BS t h w -> (BS t) (h w)') | |
# apply encoder layer (BaseEncoderLayer.forward) - it will add CLS token and output its representation | |
x = super().forward(x=x, x_mask=x_mask) # (B*S*t, D) | |
# reshape back to (B*S, t, D) | |
x = einops.rearrange(x, '(BS t) D -> BS t D', BS=BS, t=t) | |
# (B*S, t, D) | |
return x | |
class TemporalTransformerEncoderLayer(BaseEncoderLayer): | |
''' Aggregates temporal dimension with attention. Also used with pos emb as global aggregation | |
in both streams. ''' | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def forward(self, x): | |
''' x is of shape (B*S, t, D) where S is the number of segments. | |
Returns a tensor of shape (B*S, D) pooling temporal information. ''' | |
BS, t, D = x.shape | |
# apply encoder layer (BaseEncoderLayer.forward) - it will add CLS token and output its representation | |
x = super().forward(x) # (B*S, D) | |
return x # (B*S, D) | |
class AveragePooling(nn.Module): | |
def __init__(self, avg_pattern: str, then_permute_pattern: str = None) -> None: | |
''' patterns are e.g. "bs t d -> bs d" ''' | |
super().__init__() | |
# TODO: need to register them as buffers (but fails because these are strings) | |
self.reduce_fn = 'mean' | |
self.avg_pattern = avg_pattern | |
self.then_permute_pattern = then_permute_pattern | |
def forward(self, x: torch.Tensor, x_mask: torch.Tensor = None) -> torch.Tensor: | |
x = einops.reduce(x, self.avg_pattern, self.reduce_fn) | |
if self.then_permute_pattern is not None: | |
x = einops.rearrange(x, self.then_permute_pattern) | |
return x | |