Spaces:
Runtime error
Runtime error
""" | |
https://github.com/huggingface/transformers/tree/66fd3a8d626a32989f4569260db32785c6cbf42a/examples/pytorch/token-classification | |
run this command in terminal to login to huggingface hub | |
huggingface-cli login | |
instead of | |
from huggingface_hub import notebook_login | |
notebook_login() | |
""" | |
import torch | |
import datasets | |
import evaluate | |
import numpy as np | |
from tqdm.auto import tqdm | |
from transformers import Trainer, AutoModelForTokenClassification, TrainingArguments, DataCollatorForTokenClassification | |
dataset = datasets.load_dataset("json", data_files="data/ner_input_data/ner_dataset.json") | |
# Convert ner_tag list of string to sequence of classlabels as expected by hugging face for target var https://discuss.huggingface.co/t/sequence-features-class-label-cast/44638/3 | |
def get_label_list(labels): | |
"""Create list of ner labels to create ClassLabel | |
Args: | |
labels (_type_): ner label column in the dataset | |
Returns: | |
_type_: unique NER labels | |
https://github.com/huggingface/transformers/blob/66fd3a8d626a32989f4569260db32785c6cbf42a/examples/pytorch/token-classification/run_ner.py#L320 | |
""" | |
unique_labels = set() | |
for label in labels: | |
unique_labels = unique_labels | set(label) | |
label_list = list(unique_labels) | |
label_list.sort() | |
return label_list | |
all_labels = get_label_list(dataset['train']["ner_tags"]) | |
dataset = dataset.cast_column("ner_tags", datasets.Sequence(datasets.ClassLabel(names=all_labels))) | |
raw_datasets = dataset["train"].train_test_split(train_size=0.8, seed=20) | |
raw_datasets["validation"] = raw_datasets.pop("test") | |
raw_datasets["train"][0]["tokens"] | |
raw_datasets["train"][0]["ner_tags"] | |
ner_feature = raw_datasets["train"].features["ner_tags"] | |
ner_feature | |
label_names = ner_feature.feature.names | |
label_names | |
words = raw_datasets["train"][0]["tokens"] | |
labels = raw_datasets["train"][0]["ner_tags"] | |
line1 = "" | |
line2 = "" | |
for word, label in zip(words, labels): | |
full_label = label_names[label] | |
max_length = max(len(word), len(full_label)) | |
line1 += word + " " * (max_length - len(word) + 1) | |
line2 += full_label + " " * (max_length - len(full_label) + 1) | |
print(line1) | |
print(line2) | |
from transformers import AutoTokenizer | |
model_checkpoint = "bert-base-cased" | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
tokenizer.is_fast | |
inputs = tokenizer(raw_datasets["train"][0]["tokens"], is_split_into_words=True) | |
inputs.tokens() | |
inputs.word_ids() | |
def align_labels_with_tokens(labels, word_ids): | |
"""Expand our label list to match the ##subtokens post tokenization. Because tokenization adds ##subtokenz | |
Special tokens get a label of -100(ignored in the loss function) | |
For tokens inside a word but not at the beginning, we replace the B- with I- | |
Args: | |
labels (_type_): labels column | |
word_ids (_type_): word_ids | |
Returns: | |
_type_: new labels | |
""" | |
new_labels = [] | |
current_word = None | |
for word_id in word_ids: | |
if word_id != current_word: | |
# Start of a new word! | |
current_word = word_id | |
label = -100 if word_id is None else labels[word_id] | |
new_labels.append(label) | |
elif word_id is None: | |
# Special token | |
new_labels.append(-100) | |
else: | |
# Same word as previous token | |
label = labels[word_id] | |
# If the label is B-XXX we change it to I-XXX | |
if label % 2 == 1: | |
label += 1 | |
new_labels.append(label) | |
return new_labels | |
labels = raw_datasets["train"][0]["ner_tags"] | |
word_ids = inputs.word_ids() | |
print(labels) | |
print(align_labels_with_tokens(labels, word_ids)) | |
def tokenize_and_align_labels(examples): | |
"""Tokenize and handle ##subword tokens | |
Args: | |
examples (_type_): _description_ | |
Returns: | |
_type_: _description_ | |
""" | |
tokenized_inputs = tokenizer( | |
examples["tokens"], truncation=True, is_split_into_words=True | |
) | |
all_labels = examples["ner_tags"] | |
new_labels = [] | |
for i, labels in enumerate(all_labels): | |
word_ids = tokenized_inputs.word_ids(i) | |
new_labels.append(align_labels_with_tokens(labels, word_ids)) | |
tokenized_inputs["labels"] = new_labels | |
return tokenized_inputs | |
tokenized_datasets = raw_datasets.map( | |
tokenize_and_align_labels, | |
batched=True, | |
remove_columns=raw_datasets["train"].column_names, | |
) | |
data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer) | |
batch = data_collator([tokenized_datasets["train"][i] for i in range(2)]) | |
batch["labels"] | |
for i in range(2): | |
print(tokenized_datasets["train"][i]["labels"]) | |
metric = evaluate.load("seqeval") | |
labels = raw_datasets["train"][0]["ner_tags"] | |
labels = [label_names[i] for i in labels] | |
labels | |
predictions = labels.copy() | |
predictions[2] = "O" | |
metric.compute(predictions=[predictions], references=[labels]) | |
def compute_metrics(eval_preds): | |
logits, labels = eval_preds | |
predictions = np.argmax(logits, axis=-1) | |
# Remove ignored index (special tokens) and convert to labels | |
true_labels = [[label_names[l] for l in label if l != -100] for label in labels] | |
true_predictions = [ | |
[label_names[p] for (p, l) in zip(prediction, label) if l != -100] | |
for prediction, label in zip(predictions, labels) | |
] | |
all_metrics = metric.compute(predictions=true_predictions, references=true_labels) | |
return { | |
"precision": all_metrics["overall_precision"], | |
"recall": all_metrics["overall_recall"], | |
"f1": all_metrics["overall_f1"], | |
"accuracy": all_metrics["overall_accuracy"], | |
} | |
id2label = {i: label for i, label in enumerate(label_names)} | |
label2id = {v: k for k, v in id2label.items()} | |
""" Uncomment to uses highlevel Trainer from huggingface instead of custom training loop | |
model = AutoModelForTokenClassification.from_pretrained( | |
model_checkpoint, | |
id2label=id2label, | |
label2id=label2id, | |
) | |
model.config.num_labels | |
args = TrainingArguments( | |
output_dir="source/services/ner/model/hf_tokenclassification/bert-finetuned-legalentity-ner", | |
evaluation_strategy="epoch", | |
save_strategy="epoch", | |
learning_rate=2e-5, | |
num_train_epochs=6, | |
weight_decay=0.01, | |
push_to_hub=True, | |
) | |
trainer = Trainer( | |
model=model, | |
args=args, | |
train_dataset=tokenized_datasets["train"], | |
eval_dataset=tokenized_datasets["validation"], | |
data_collator=data_collator, | |
compute_metrics=compute_metrics, | |
tokenizer=tokenizer, | |
) | |
trainer.train() | |
trainer.push_to_hub(commit_message="Training complete") | |
""" | |
from torch.utils.data import DataLoader | |
train_dataloader = DataLoader( | |
tokenized_datasets["train"], | |
shuffle=True, | |
collate_fn=data_collator, | |
batch_size=8, | |
) | |
eval_dataloader = DataLoader( | |
tokenized_datasets["validation"], collate_fn=data_collator, batch_size=8 | |
) | |
model = AutoModelForTokenClassification.from_pretrained( | |
model_checkpoint, | |
id2label=id2label, | |
label2id=label2id, | |
) | |
from torch.optim import AdamW | |
optimizer = AdamW(model.parameters(), lr=2e-5) | |
from accelerate import Accelerator | |
accelerator = Accelerator() | |
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( | |
model, optimizer, train_dataloader, eval_dataloader | |
) | |
from transformers import get_scheduler | |
num_train_epochs = 6 | |
num_update_steps_per_epoch = len(train_dataloader) | |
num_training_steps = num_train_epochs * num_update_steps_per_epoch | |
lr_scheduler = get_scheduler( | |
"linear", | |
optimizer=optimizer, | |
num_warmup_steps=0, | |
num_training_steps=num_training_steps, | |
) | |
from huggingface_hub import Repository, get_full_repo_name | |
model_name = "bert-finetuned-legalentity-ner-accelerate" | |
repo_name = get_full_repo_name(model_name) | |
repo_name | |
output_dir = "source/services/ner/model/hf_tokenclassification/bert-finetuned-legalentity-ner-accelerate" | |
repo = Repository(output_dir, clone_from=repo_name) | |
def postprocess(predictions, labels): | |
predictions = predictions.detach().cpu().clone().numpy() | |
labels = labels.detach().cpu().clone().numpy() | |
# Remove ignored index (special tokens) and convert to labels | |
true_labels = [[label_names[l] for l in label if l != -100] for label in labels] | |
true_predictions = [ | |
[label_names[p] for (p, l) in zip(prediction, label) if l != -100] | |
for prediction, label in zip(predictions, labels) | |
] | |
return true_labels, true_predictions | |
progress_bar = tqdm(range(num_training_steps)) | |
for epoch in range(num_train_epochs): | |
# Training | |
model.train() | |
for batch in train_dataloader: | |
outputs = model(**batch) | |
loss = outputs.loss | |
accelerator.backward(loss) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad() | |
progress_bar.update(1) | |
# Evaluation | |
model.eval() | |
for batch in eval_dataloader: | |
with torch.no_grad(): | |
outputs = model(**batch) | |
predictions = outputs.logits.argmax(dim=-1) | |
labels = batch["labels"] | |
# Necessary to pad predictions and labels for being gathered | |
predictions = accelerator.pad_across_processes(predictions, dim=1, pad_index=-100) | |
labels = accelerator.pad_across_processes(labels, dim=1, pad_index=-100) | |
predictions_gathered = accelerator.gather(predictions) | |
labels_gathered = accelerator.gather(labels) | |
true_predictions, true_labels = postprocess(predictions_gathered, labels_gathered) | |
metric.add_batch(predictions=true_predictions, references=true_labels) | |
results = metric.compute() | |
print( | |
f"epoch {epoch}:", | |
{ | |
key: results[f"overall_{key}"] | |
for key in ["precision", "recall", "f1", "accuracy"] | |
}, | |
) | |
# Save and upload | |
accelerator.wait_for_everyone() | |
unwrapped_model = accelerator.unwrap_model(model) | |
unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save) | |
if accelerator.is_main_process: | |
tokenizer.save_pretrained(output_dir) | |
repo.push_to_hub( | |
commit_message=f"Training in progress epoch {epoch}", blocking=False | |
) | |
accelerator.wait_for_everyone() | |
unwrapped_model = accelerator.unwrap_model(model) | |
unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save) | |
from transformers import pipeline | |
# Replace this with your own checkpoint | |
model_checkpoint = "aimlnerd/bert-finetuned-legalentity-ner-accelerate" | |
token_classifier = pipeline( | |
"token-classification", model=model_checkpoint, aggregation_strategy="simple" | |
) | |
token_classifier("My name is James Bond and I work at MI6 in London.") |