images / app.py
aimersion's picture
Update app.py
8f879f7 verified
import gradio as gr
import numpy as np
import random
import torch
import time
from diffusers import DiffusionPipeline
# Set the device and dtype
dtype = torch.float16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the diffusion pipeline
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)):
start_time = time.time()
if width > MAX_IMAGE_SIZE or height > MAX_IMAGE_SIZE:
raise ValueError("Image size exceeds the maximum allowed dimensions.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
try:
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
except Exception as e:
print(f"Error generating image: {e}")
return None, seed, f"Error: {str(e)}"
if time.time() - start_time > 60:
return None, seed, "Image generation took too long and was cancelled."
return image, seed, None
examples = [
["a tiny astronaut hatching from an egg on the moon"],
["a cat holding a sign that says hello world"],
["an anime illustration of a wiener schnitzel"],
]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Custom Image Creator
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1)]
""")
with gr.Row():
with gr.Column(scale=2):
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt",
lines=3
)
run_button = gr.Button("Generate Image", variant="primary")
with gr.Column(scale=2):
result = gr.Image(label="Generated Image")
seed_output = gr.Number(label="Seed Used")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
with gr.Row():
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=4)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=20.0, step=0.5, value=7.5)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result, seed_output],
fn=infer,
cache_examples=True
)
run_button.click(
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps, guidance_scale],
outputs=[result, seed_output]
)
gr.Markdown("""
## Save Your Image
Right-click on the generated image and select 'Save image as' to download it.
""")
if __name__ == "__main__":
demo.launch()