ACE-Step / ui /components.py
aifeifei798's picture
Update ui/components.py
3aed165 verified
raw
history blame
16.1 kB
"""
ACE-Step: A Step Towards Music Generation Foundation Model
https://github.com/ace-step/ACE-Step
Apache 2.0 License
"""
import gradio as gr
import librosa
import os
TAG_DEFAULT = "pop, piano, rap, dark, atmospheric"
LYRIC_DEFAULT = """[verse]
月光爬上窗 染白冷的床
心跳的方向 带我入迷惘
黑夜吞噬光 命运的纸张
爱是血色霜 邪恶又芬芳
[chorus]
你是猎人的欲望 我是迷途的小羊
深陷你眼眸的荒 唐突献出心脏
我在夜里回荡 是谁给我希望
黑暗风中飘荡 假装不再受伤
[verse]
心锁在门外 谁会解开关怀
温柔的手拍 藏着冷酷杀害
思绪如尘埃 撞击爱的霹雳
灵魂的独白 为你沾满血迹
[bridge]
你是噩梦的歌唱 是灵魂的捆绑
绝望中带着光 悬崖边的渴望
心跳被你鼓掌 恶魔也痴痴想
渐渐没了抵抗 古老诡计流淌
[chorus]
你是猎人的欲望 我是迷途的小羊
深陷你眼眸的荒 唐突献出心脏
我在夜里回荡 是谁给我希望
黑暗风中飘荡 假装不再受伤
[outro]
爱如月黑无光 渗进梦的战场
逃入无声的场 放手或心嚷嚷
隐秘的极端 爱是极致风浪
灵魂彻底交偿 你是终极虚妄
"""
# First, let's define the presets at the top of the file, after the imports
GENRE_PRESETS = {
"现代流行 (Modern Pop)": "pop, synth, drums, guitar, 120 bpm, upbeat, catchy, vibrant, female vocals, polished vocals",
"摇滚 (Rock)": "rock, electric guitar, drums, bass, 130 bpm, energetic, rebellious, gritty, male vocals, raw vocals",
"嘻哈 (Hip Hop)": "hip hop, 808 bass, hi-hats, synth, 90 bpm, bold, urban, intense, male vocals, rhythmic vocals",
"乡村 (Country)": "country, acoustic guitar, steel guitar, fiddle, 100 bpm, heartfelt, rustic, warm, male vocals, twangy vocals",
"电子舞曲 (EDM)": "edm, synth, bass, kick drum, 128 bpm, euphoric, pulsating, energetic, instrumental",
"雷鬼 (Reggae)": "reggae, guitar, bass, drums, 80 bpm, chill, soulful, positive, male vocals, smooth vocals",
"古典 (Classical)": "classical, orchestral, strings, piano, 60 bpm, elegant, emotive, timeless, instrumental",
"爵士 (Jazz)": "jazz, saxophone, piano, double bass, 110 bpm, smooth, improvisational, soulful, male vocals, crooning vocals",
"金属 (Metal)": "metal, electric guitar, double kick drum, bass, 160 bpm, aggressive, intense, heavy, male vocals, screamed vocals",
"R&B (R&B)": "r&b, synth, bass, drums, 85 bpm, sultry, groovy, romantic, female vocals, silky vocals"
}
# Add this function to handle preset selection
def update_tags_from_preset(preset_name):
if preset_name == "自定义 (Custom)":
return ""
return GENRE_PRESETS.get(preset_name, "")
def create_output_ui(task_name="已生成的"):
# For many consumer-grade GPU devices, only one batch can be run
output_audio1 = gr.Audio(type="filepath", label=f"{task_name} 歌")
# output_audio2 = gr.Audio(type="filepath", label="Generated Audio 2")
with gr.Accordion(f"{task_name} 参数(凭据)", open=False):
input_params_json = gr.JSON(label=f"{task_name} 参数")
# outputs = [output_audio1, output_audio2]
outputs = [output_audio1]
return outputs, input_params_json
def dump_func(*args):
print(args)
return []
def create_text2music_ui(
gr,
text2music_process_func,
sample_data_func=None,
load_data_func=None,
):
with gr.Row():
with gr.Column():
with gr.Row(equal_height=True):
# add markdown, tags and lyrics examples are from ai music generation community
audio_duration = gr.Slider(
-1,
240.0,
step=1,
value=-1,
label="音频时长",
interactive=True,
info="-1 表示随机时长 (30 ~ 240秒)。",
scale=9,
)
sample_bnt = gr.Button("示例", variant="secondary", scale=1)
# audio2audio
with gr.Row(equal_height=True):
audio2audio_enable = gr.Checkbox(label="启用音频到音频生成", value=False, info="勾选以使用参考音频进行音频到音频生成。", elem_id="audio2audio_checkbox")
lora_name_or_path = gr.Dropdown(
label="中文说唱",
choices=["ACE-Step/ACE-Step-v1-chinese-rap-LoRA", "none"],
value="none",
allow_custom_value=True,
)
ref_audio_input = gr.Audio(type="filepath", label="参考音频 (用于音频到音频生成)", visible=False, elem_id="ref_audio_input", show_download_button=True)
ref_audio_strength = gr.Slider(
label="参考音频强度",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.5,
elem_id="ref_audio_strength",
visible=False,
interactive=True,
)
def toggle_ref_audio_visibility(is_checked):
return (
gr.update(visible=is_checked, elem_id="ref_audio_input"),
gr.update(visible=is_checked, elem_id="ref_audio_strength"),
)
audio2audio_enable.change(
fn=toggle_ref_audio_visibility,
inputs=[audio2audio_enable],
outputs=[ref_audio_input, ref_audio_strength],
)
with gr.Column(scale=2):
with gr.Group():
gr.Markdown("""<center>支持风格、描述和场景。使用逗号分隔不同的标签。</center>""")
genre_preset = gr.Dropdown(
choices=["自定义 (Custom)"] + list(GENRE_PRESETS.keys()),
value="自定义 (Custom)",
label="预设",
scale=1,
)
prompt = gr.Textbox(
lines=1,
label="生成的音乐风格",
max_lines=10,
value=TAG_DEFAULT,
scale=9,
)
# Add the change event for the preset dropdown
genre_preset.change(
fn=update_tags_from_preset,
inputs=[genre_preset],
outputs=[prompt]
)
with gr.Group():
gr.Markdown("""<center>[verse]、[chorus] 和 [bridge] 来分隔歌词的不同部分。<br>使用 [instrumental] 或 [inst] 生成纯音乐。不支持歌词中的流派结构标签。</center>""")
lyrics = gr.Textbox(
lines=9,
label="歌词",
max_lines=500,
value=LYRIC_DEFAULT,
)
with gr.Accordion("基本设置", open=False, visible=False):
infer_step = gr.Slider(
minimum=1,
maximum=200,
step=1,
value=60,
label="推理步数",
interactive=True,
)
guidance_scale = gr.Slider(
minimum=0.0,
maximum=30.0,
step=0.1,
value=15.0,
label="引导尺度",
interactive=True,
info="当 guidance_scale_lyric > 1 且 guidance_scale_text > 1 时,不应用引导尺度。",
)
guidance_scale_text = gr.Slider(
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
label="文本引导尺度",
interactive=True,
info="文本条件的引导尺度。仅适用于 cfg。建议设置 guidance_scale_text=5.0, guidance_scale_lyric=1.5 作为开始。",
)
guidance_scale_lyric = gr.Slider(
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
label="歌词引导尺度",
interactive=True,
)
manual_seeds = gr.Textbox(
label="手动种子 (默认为无)",
placeholder="1,2,3,4",
value=None,
info="生成种子",
)
with gr.Accordion("高级设置", open=False, visible=False):
scheduler_type = gr.Radio(
["euler", "heun"],
value="euler",
label="调度器类型",
elem_id="scheduler_type",
info="生成调度器类型。推荐使用 euler。heun 将花费更多时间。",
)
cfg_type = gr.Radio(
["cfg", "apg", "cfg_star"],
value="apg",
label="CFG 类型",
elem_id="cfg_type",
info="生成 CFG 类型。推荐使用 apg。cfg 和 cfg_star 几乎相同。",
)
use_erg_tag = gr.Checkbox(
label="对标签使用 ERG",
value=True,
info="对标签使用熵校正引导。它将注意力乘以一个温度,以减弱标签条件并提高多样性。",
)
use_erg_lyric = gr.Checkbox(
label="对歌词使用 ERG",
value=False,
info="同上,但应用于歌词编码器的注意力。",
)
use_erg_diffusion = gr.Checkbox(
label="对扩散模型使用 ERG",
value=True,
info="同上,但应用于扩散模型的注意力。",
)
omega_scale = gr.Slider(
minimum=-100.0,
maximum=100.0,
step=0.1,
value=10.0,
label="粒度尺度",
interactive=True,
info="生成粒度尺度。值越高可以减少伪影。",
)
guidance_interval = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.5,
label="引导间隔",
interactive=True,
info="生成引导间隔。0.5 表示仅在中间步骤应用引导 (0.25 * 推理步数 到 0.75 * 推理步数)。",
)
guidance_interval_decay = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.0,
label="引导间隔衰减",
interactive=True,
info="生成引导间隔衰减。引导尺度将在此间隔内从 guidance_scale 衰减到 min_guidance_scale。0.0 表示不衰减。",
)
min_guidance_scale = gr.Slider(
minimum=0.0,
maximum=200.0,
step=0.1,
value=3.0,
label="最小引导尺度",
interactive=True,
info="引导间隔衰减结束时的最小引导尺度。",
)
oss_steps = gr.Textbox(
label="OSS 步数",
placeholder="16, 29, 52, 96, 129, 158, 172, 183, 189, 200",
value=None,
info="生成的最优步数。但未充分测试。",
)
text2music_bnt = gr.Button("生成", variant="primary")
outputs, input_params_json = create_output_ui()
def json2output(json_data):
return (
json_data["audio_duration"],
json_data["prompt"],
json_data["lyrics"],
json_data["infer_step"],
json_data["guidance_scale"],
json_data["scheduler_type"],
json_data["cfg_type"],
json_data["omega_scale"],
", ".join(map(str, json_data["actual_seeds"])),
json_data["guidance_interval"],
json_data["guidance_interval_decay"],
json_data["min_guidance_scale"],
json_data["use_erg_tag"],
json_data["use_erg_lyric"],
json_data["use_erg_diffusion"],
", ".join(map(str, json_data["oss_steps"])),
(
json_data["guidance_scale_text"]
if "guidance_scale_text" in json_data
else 0.0
),
(
json_data["guidance_scale_lyric"]
if "guidance_scale_lyric" in json_data
else 0.0
),
(
json_data["audio2audio_enable"]
if "audio2audio_enable" in json_data
else False
),
(
json_data["ref_audio_strength"]
if "ref_audio_strength" in json_data
else 0.5
),
(
json_data["ref_audio_input"]
if "ref_audio_input" in json_data
else None
),
)
def sample_data(lora_name_or_path_):
json_data = sample_data_func(lora_name_or_path_)
return json2output(json_data)
sample_bnt.click(
sample_data,
inputs=[lora_name_or_path],
outputs=[
audio_duration,
prompt,
lyrics,
infer_step,
guidance_scale,
scheduler_type,
cfg_type,
omega_scale,
manual_seeds,
guidance_interval,
guidance_interval_decay,
min_guidance_scale,
use_erg_tag,
use_erg_lyric,
use_erg_diffusion,
oss_steps,
guidance_scale_text,
guidance_scale_lyric,
audio2audio_enable,
ref_audio_strength,
ref_audio_input,
],
)
text2music_bnt.click(
fn=text2music_process_func,
inputs=[
audio_duration,
prompt,
lyrics,
infer_step,
guidance_scale,
scheduler_type,
cfg_type,
omega_scale,
manual_seeds,
guidance_interval,
guidance_interval_decay,
min_guidance_scale,
use_erg_tag,
use_erg_lyric,
use_erg_diffusion,
oss_steps,
guidance_scale_text,
guidance_scale_lyric,
audio2audio_enable,
ref_audio_strength,
ref_audio_input,
lora_name_or_path,
],
outputs=outputs + [input_params_json],
)
def create_main_demo_ui(
text2music_process_func=dump_func,
sample_data_func=dump_func,
load_data_func=dump_func,
):
with gr.Blocks(
title="ACE-Step",
) as demo:
with gr.Tab("文本转音乐"):
create_text2music_ui(
gr=gr,
text2music_process_func=text2music_process_func,
sample_data_func=sample_data_func,
load_data_func=load_data_func,
)
return demo
if __name__ == "__main__":
demo = create_main_demo_ui()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
)