Spaces:
Running
on
Zero
Running
on
Zero
""" | |
ACE-Step: A Step Towards Music Generation Foundation Model | |
https://github.com/ace-step/ACE-Step | |
Apache 2.0 License | |
""" | |
import gradio as gr | |
import librosa | |
import os | |
TAG_DEFAULT = "pop, piano, rap, dark, atmospheric" | |
LYRIC_DEFAULT = """[verse] | |
月光爬上窗 染白冷的床 | |
心跳的方向 带我入迷惘 | |
黑夜吞噬光 命运的纸张 | |
爱是血色霜 邪恶又芬芳 | |
[chorus] | |
你是猎人的欲望 我是迷途的小羊 | |
深陷你眼眸的荒 唐突献出心脏 | |
我在夜里回荡 是谁给我希望 | |
黑暗风中飘荡 假装不再受伤 | |
[verse] | |
心锁在门外 谁会解开关怀 | |
温柔的手拍 藏着冷酷杀害 | |
思绪如尘埃 撞击爱的霹雳 | |
灵魂的独白 为你沾满血迹 | |
[bridge] | |
你是噩梦的歌唱 是灵魂的捆绑 | |
绝望中带着光 悬崖边的渴望 | |
心跳被你鼓掌 恶魔也痴痴想 | |
渐渐没了抵抗 古老诡计流淌 | |
[chorus] | |
你是猎人的欲望 我是迷途的小羊 | |
深陷你眼眸的荒 唐突献出心脏 | |
我在夜里回荡 是谁给我希望 | |
黑暗风中飘荡 假装不再受伤 | |
[outro] | |
爱如月黑无光 渗进梦的战场 | |
逃入无声的场 放手或心嚷嚷 | |
隐秘的极端 爱是极致风浪 | |
灵魂彻底交偿 你是终极虚妄 | |
""" | |
# First, let's define the presets at the top of the file, after the imports | |
GENRE_PRESETS = { | |
"现代流行 (Modern Pop)": "pop, synth, drums, guitar, 120 bpm, upbeat, catchy, vibrant, female vocals, polished vocals", | |
"摇滚 (Rock)": "rock, electric guitar, drums, bass, 130 bpm, energetic, rebellious, gritty, male vocals, raw vocals", | |
"嘻哈 (Hip Hop)": "hip hop, 808 bass, hi-hats, synth, 90 bpm, bold, urban, intense, male vocals, rhythmic vocals", | |
"乡村 (Country)": "country, acoustic guitar, steel guitar, fiddle, 100 bpm, heartfelt, rustic, warm, male vocals, twangy vocals", | |
"电子舞曲 (EDM)": "edm, synth, bass, kick drum, 128 bpm, euphoric, pulsating, energetic, instrumental", | |
"雷鬼 (Reggae)": "reggae, guitar, bass, drums, 80 bpm, chill, soulful, positive, male vocals, smooth vocals", | |
"古典 (Classical)": "classical, orchestral, strings, piano, 60 bpm, elegant, emotive, timeless, instrumental", | |
"爵士 (Jazz)": "jazz, saxophone, piano, double bass, 110 bpm, smooth, improvisational, soulful, male vocals, crooning vocals", | |
"金属 (Metal)": "metal, electric guitar, double kick drum, bass, 160 bpm, aggressive, intense, heavy, male vocals, screamed vocals", | |
"R&B (R&B)": "r&b, synth, bass, drums, 85 bpm, sultry, groovy, romantic, female vocals, silky vocals" | |
} | |
# Add this function to handle preset selection | |
def update_tags_from_preset(preset_name): | |
if preset_name == "自定义 (Custom)": | |
return "" | |
return GENRE_PRESETS.get(preset_name, "") | |
def create_output_ui(task_name="已生成的"): | |
# For many consumer-grade GPU devices, only one batch can be run | |
output_audio1 = gr.Audio(type="filepath", label=f"{task_name} 歌") | |
# output_audio2 = gr.Audio(type="filepath", label="Generated Audio 2") | |
with gr.Accordion(f"{task_name} 参数(凭据)", open=False): | |
input_params_json = gr.JSON(label=f"{task_name} 参数") | |
# outputs = [output_audio1, output_audio2] | |
outputs = [output_audio1] | |
return outputs, input_params_json | |
def dump_func(*args): | |
print(args) | |
return [] | |
def create_text2music_ui( | |
gr, | |
text2music_process_func, | |
sample_data_func=None, | |
load_data_func=None, | |
): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(equal_height=True): | |
# add markdown, tags and lyrics examples are from ai music generation community | |
audio_duration = gr.Slider( | |
-1, | |
240.0, | |
step=1, | |
value=-1, | |
label="音频时长", | |
interactive=True, | |
info="-1 表示随机时长 (30 ~ 240秒)。", | |
scale=9, | |
) | |
sample_bnt = gr.Button("示例", variant="secondary", scale=1) | |
# audio2audio | |
with gr.Row(equal_height=True): | |
audio2audio_enable = gr.Checkbox(label="启用音频到音频生成", value=False, info="勾选以使用参考音频进行音频到音频生成。", elem_id="audio2audio_checkbox") | |
lora_name_or_path = gr.Dropdown( | |
label="中文说唱", | |
choices=["ACE-Step/ACE-Step-v1-chinese-rap-LoRA", "none"], | |
value="none", | |
allow_custom_value=True, | |
) | |
ref_audio_input = gr.Audio(type="filepath", label="参考音频 (用于音频到音频生成)", visible=False, elem_id="ref_audio_input", show_download_button=True) | |
ref_audio_strength = gr.Slider( | |
label="参考音频强度", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=0.5, | |
elem_id="ref_audio_strength", | |
visible=False, | |
interactive=True, | |
) | |
def toggle_ref_audio_visibility(is_checked): | |
return ( | |
gr.update(visible=is_checked, elem_id="ref_audio_input"), | |
gr.update(visible=is_checked, elem_id="ref_audio_strength"), | |
) | |
audio2audio_enable.change( | |
fn=toggle_ref_audio_visibility, | |
inputs=[audio2audio_enable], | |
outputs=[ref_audio_input, ref_audio_strength], | |
) | |
with gr.Column(scale=2): | |
with gr.Group(): | |
gr.Markdown("""<center>支持风格、描述和场景。使用逗号分隔不同的标签。</center>""") | |
genre_preset = gr.Dropdown( | |
choices=["自定义 (Custom)"] + list(GENRE_PRESETS.keys()), | |
value="自定义 (Custom)", | |
label="预设", | |
scale=1, | |
) | |
prompt = gr.Textbox( | |
lines=1, | |
label="生成的音乐风格", | |
max_lines=10, | |
value=TAG_DEFAULT, | |
scale=9, | |
) | |
# Add the change event for the preset dropdown | |
genre_preset.change( | |
fn=update_tags_from_preset, | |
inputs=[genre_preset], | |
outputs=[prompt] | |
) | |
with gr.Group(): | |
gr.Markdown("""<center>[verse]、[chorus] 和 [bridge] 来分隔歌词的不同部分。<br>使用 [instrumental] 或 [inst] 生成纯音乐。不支持歌词中的流派结构标签。</center>""") | |
lyrics = gr.Textbox( | |
lines=9, | |
label="歌词", | |
max_lines=500, | |
value=LYRIC_DEFAULT, | |
) | |
with gr.Accordion("基本设置", open=False, visible=False): | |
infer_step = gr.Slider( | |
minimum=1, | |
maximum=200, | |
step=1, | |
value=60, | |
label="推理步数", | |
interactive=True, | |
) | |
guidance_scale = gr.Slider( | |
minimum=0.0, | |
maximum=30.0, | |
step=0.1, | |
value=15.0, | |
label="引导尺度", | |
interactive=True, | |
info="当 guidance_scale_lyric > 1 且 guidance_scale_text > 1 时,不应用引导尺度。", | |
) | |
guidance_scale_text = gr.Slider( | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=0.0, | |
label="文本引导尺度", | |
interactive=True, | |
info="文本条件的引导尺度。仅适用于 cfg。建议设置 guidance_scale_text=5.0, guidance_scale_lyric=1.5 作为开始。", | |
) | |
guidance_scale_lyric = gr.Slider( | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=0.0, | |
label="歌词引导尺度", | |
interactive=True, | |
) | |
manual_seeds = gr.Textbox( | |
label="手动种子 (默认为无)", | |
placeholder="1,2,3,4", | |
value=None, | |
info="生成种子", | |
) | |
with gr.Accordion("高级设置", open=False, visible=False): | |
scheduler_type = gr.Radio( | |
["euler", "heun"], | |
value="euler", | |
label="调度器类型", | |
elem_id="scheduler_type", | |
info="生成调度器类型。推荐使用 euler。heun 将花费更多时间。", | |
) | |
cfg_type = gr.Radio( | |
["cfg", "apg", "cfg_star"], | |
value="apg", | |
label="CFG 类型", | |
elem_id="cfg_type", | |
info="生成 CFG 类型。推荐使用 apg。cfg 和 cfg_star 几乎相同。", | |
) | |
use_erg_tag = gr.Checkbox( | |
label="对标签使用 ERG", | |
value=True, | |
info="对标签使用熵校正引导。它将注意力乘以一个温度,以减弱标签条件并提高多样性。", | |
) | |
use_erg_lyric = gr.Checkbox( | |
label="对歌词使用 ERG", | |
value=False, | |
info="同上,但应用于歌词编码器的注意力。", | |
) | |
use_erg_diffusion = gr.Checkbox( | |
label="对扩散模型使用 ERG", | |
value=True, | |
info="同上,但应用于扩散模型的注意力。", | |
) | |
omega_scale = gr.Slider( | |
minimum=-100.0, | |
maximum=100.0, | |
step=0.1, | |
value=10.0, | |
label="粒度尺度", | |
interactive=True, | |
info="生成粒度尺度。值越高可以减少伪影。", | |
) | |
guidance_interval = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=0.5, | |
label="引导间隔", | |
interactive=True, | |
info="生成引导间隔。0.5 表示仅在中间步骤应用引导 (0.25 * 推理步数 到 0.75 * 推理步数)。", | |
) | |
guidance_interval_decay = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=0.0, | |
label="引导间隔衰减", | |
interactive=True, | |
info="生成引导间隔衰减。引导尺度将在此间隔内从 guidance_scale 衰减到 min_guidance_scale。0.0 表示不衰减。", | |
) | |
min_guidance_scale = gr.Slider( | |
minimum=0.0, | |
maximum=200.0, | |
step=0.1, | |
value=3.0, | |
label="最小引导尺度", | |
interactive=True, | |
info="引导间隔衰减结束时的最小引导尺度。", | |
) | |
oss_steps = gr.Textbox( | |
label="OSS 步数", | |
placeholder="16, 29, 52, 96, 129, 158, 172, 183, 189, 200", | |
value=None, | |
info="生成的最优步数。但未充分测试。", | |
) | |
text2music_bnt = gr.Button("生成", variant="primary") | |
outputs, input_params_json = create_output_ui() | |
def json2output(json_data): | |
return ( | |
json_data["audio_duration"], | |
json_data["prompt"], | |
json_data["lyrics"], | |
json_data["infer_step"], | |
json_data["guidance_scale"], | |
json_data["scheduler_type"], | |
json_data["cfg_type"], | |
json_data["omega_scale"], | |
", ".join(map(str, json_data["actual_seeds"])), | |
json_data["guidance_interval"], | |
json_data["guidance_interval_decay"], | |
json_data["min_guidance_scale"], | |
json_data["use_erg_tag"], | |
json_data["use_erg_lyric"], | |
json_data["use_erg_diffusion"], | |
", ".join(map(str, json_data["oss_steps"])), | |
( | |
json_data["guidance_scale_text"] | |
if "guidance_scale_text" in json_data | |
else 0.0 | |
), | |
( | |
json_data["guidance_scale_lyric"] | |
if "guidance_scale_lyric" in json_data | |
else 0.0 | |
), | |
( | |
json_data["audio2audio_enable"] | |
if "audio2audio_enable" in json_data | |
else False | |
), | |
( | |
json_data["ref_audio_strength"] | |
if "ref_audio_strength" in json_data | |
else 0.5 | |
), | |
( | |
json_data["ref_audio_input"] | |
if "ref_audio_input" in json_data | |
else None | |
), | |
) | |
def sample_data(lora_name_or_path_): | |
json_data = sample_data_func(lora_name_or_path_) | |
return json2output(json_data) | |
sample_bnt.click( | |
sample_data, | |
inputs=[lora_name_or_path], | |
outputs=[ | |
audio_duration, | |
prompt, | |
lyrics, | |
infer_step, | |
guidance_scale, | |
scheduler_type, | |
cfg_type, | |
omega_scale, | |
manual_seeds, | |
guidance_interval, | |
guidance_interval_decay, | |
min_guidance_scale, | |
use_erg_tag, | |
use_erg_lyric, | |
use_erg_diffusion, | |
oss_steps, | |
guidance_scale_text, | |
guidance_scale_lyric, | |
audio2audio_enable, | |
ref_audio_strength, | |
ref_audio_input, | |
], | |
) | |
text2music_bnt.click( | |
fn=text2music_process_func, | |
inputs=[ | |
audio_duration, | |
prompt, | |
lyrics, | |
infer_step, | |
guidance_scale, | |
scheduler_type, | |
cfg_type, | |
omega_scale, | |
manual_seeds, | |
guidance_interval, | |
guidance_interval_decay, | |
min_guidance_scale, | |
use_erg_tag, | |
use_erg_lyric, | |
use_erg_diffusion, | |
oss_steps, | |
guidance_scale_text, | |
guidance_scale_lyric, | |
audio2audio_enable, | |
ref_audio_strength, | |
ref_audio_input, | |
lora_name_or_path, | |
], | |
outputs=outputs + [input_params_json], | |
) | |
def create_main_demo_ui( | |
text2music_process_func=dump_func, | |
sample_data_func=dump_func, | |
load_data_func=dump_func, | |
): | |
with gr.Blocks( | |
title="ACE-Step", | |
) as demo: | |
with gr.Tab("文本转音乐"): | |
create_text2music_ui( | |
gr=gr, | |
text2music_process_func=text2music_process_func, | |
sample_data_func=sample_data_func, | |
load_data_func=load_data_func, | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_main_demo_ui() | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
) |