""" ACE-Step: A Step Towards Music Generation Foundation Model https://github.com/ace-step/ACE-Step Apache 2.0 License """ import gradio as gr import librosa import os TAG_DEFAULT = "pop, piano, rap, dark, atmospheric" LYRIC_DEFAULT = """[verse] 月光爬上窗 染白冷的床 心跳的方向 带我入迷惘 黑夜吞噬光 命运的纸张 爱是血色霜 邪恶又芬芳 [chorus] 你是猎人的欲望 我是迷途的小羊 深陷你眼眸的荒 唐突献出心脏 我在夜里回荡 是谁给我希望 黑暗风中飘荡 假装不再受伤 [verse] 心锁在门外 谁会解开关怀 温柔的手拍 藏着冷酷杀害 思绪如尘埃 撞击爱的霹雳 灵魂的独白 为你沾满血迹 [bridge] 你是噩梦的歌唱 是灵魂的捆绑 绝望中带着光 悬崖边的渴望 心跳被你鼓掌 恶魔也痴痴想 渐渐没了抵抗 古老诡计流淌 [chorus] 你是猎人的欲望 我是迷途的小羊 深陷你眼眸的荒 唐突献出心脏 我在夜里回荡 是谁给我希望 黑暗风中飘荡 假装不再受伤 [outro] 爱如月黑无光 渗进梦的战场 逃入无声的场 放手或心嚷嚷 隐秘的极端 爱是极致风浪 灵魂彻底交偿 你是终极虚妄 """ # First, let's define the presets at the top of the file, after the imports GENRE_PRESETS = { "现代流行 (Modern Pop)": "pop, synth, drums, guitar, 120 bpm, upbeat, catchy, vibrant, female vocals, polished vocals", "摇滚 (Rock)": "rock, electric guitar, drums, bass, 130 bpm, energetic, rebellious, gritty, male vocals, raw vocals", "嘻哈 (Hip Hop)": "hip hop, 808 bass, hi-hats, synth, 90 bpm, bold, urban, intense, male vocals, rhythmic vocals", "乡村 (Country)": "country, acoustic guitar, steel guitar, fiddle, 100 bpm, heartfelt, rustic, warm, male vocals, twangy vocals", "电子舞曲 (EDM)": "edm, synth, bass, kick drum, 128 bpm, euphoric, pulsating, energetic, instrumental", "雷鬼 (Reggae)": "reggae, guitar, bass, drums, 80 bpm, chill, soulful, positive, male vocals, smooth vocals", "古典 (Classical)": "classical, orchestral, strings, piano, 60 bpm, elegant, emotive, timeless, instrumental", "爵士 (Jazz)": "jazz, saxophone, piano, double bass, 110 bpm, smooth, improvisational, soulful, male vocals, crooning vocals", "金属 (Metal)": "metal, electric guitar, double kick drum, bass, 160 bpm, aggressive, intense, heavy, male vocals, screamed vocals", "R&B (R&B)": "r&b, synth, bass, drums, 85 bpm, sultry, groovy, romantic, female vocals, silky vocals" } # Add this function to handle preset selection def update_tags_from_preset(preset_name): if preset_name == "自定义 (Custom)": return "" return GENRE_PRESETS.get(preset_name, "") def create_output_ui(task_name="已生成的"): # For many consumer-grade GPU devices, only one batch can be run output_audio1 = gr.Audio(type="filepath", label=f"{task_name} 歌") # output_audio2 = gr.Audio(type="filepath", label="Generated Audio 2") with gr.Accordion(f"{task_name} 参数(凭据)", open=False): input_params_json = gr.JSON(label=f"{task_name} 参数") # outputs = [output_audio1, output_audio2] outputs = [output_audio1] return outputs, input_params_json def dump_func(*args): print(args) return [] def create_text2music_ui( gr, text2music_process_func, sample_data_func=None, load_data_func=None, ): with gr.Row(): with gr.Column(): with gr.Row(equal_height=True): # add markdown, tags and lyrics examples are from ai music generation community audio_duration = gr.Slider( -1, 240.0, step=1, value=-1, label="音频时长", interactive=True, info="-1 表示随机时长 (30 ~ 240秒)。", scale=9, ) sample_bnt = gr.Button("示例", variant="secondary", scale=1) # audio2audio with gr.Row(equal_height=True): audio2audio_enable = gr.Checkbox(label="启用音频到音频生成", value=False, info="勾选以使用参考音频进行音频到音频生成。", elem_id="audio2audio_checkbox") lora_name_or_path = gr.Dropdown( label="中文说唱", choices=["ACE-Step/ACE-Step-v1-chinese-rap-LoRA", "none"], value="none", allow_custom_value=True, ) ref_audio_input = gr.Audio(type="filepath", label="参考音频 (用于音频到音频生成)", visible=False, elem_id="ref_audio_input", show_download_button=True) ref_audio_strength = gr.Slider( label="参考音频强度", minimum=0.0, maximum=1.0, step=0.01, value=0.5, elem_id="ref_audio_strength", visible=False, interactive=True, ) def toggle_ref_audio_visibility(is_checked): return ( gr.update(visible=is_checked, elem_id="ref_audio_input"), gr.update(visible=is_checked, elem_id="ref_audio_strength"), ) audio2audio_enable.change( fn=toggle_ref_audio_visibility, inputs=[audio2audio_enable], outputs=[ref_audio_input, ref_audio_strength], ) with gr.Column(scale=2): with gr.Group(): gr.Markdown("""
支持风格、描述和场景。使用逗号分隔不同的标签。
""") genre_preset = gr.Dropdown( choices=["自定义 (Custom)"] + list(GENRE_PRESETS.keys()), value="自定义 (Custom)", label="预设", scale=1, ) prompt = gr.Textbox( lines=1, label="生成的音乐风格", max_lines=10, value=TAG_DEFAULT, scale=9, ) # Add the change event for the preset dropdown genre_preset.change( fn=update_tags_from_preset, inputs=[genre_preset], outputs=[prompt] ) with gr.Group(): gr.Markdown("""
[verse]、[chorus] 和 [bridge] 来分隔歌词的不同部分。
使用 [instrumental] 或 [inst] 生成纯音乐。不支持歌词中的流派结构标签。
""") lyrics = gr.Textbox( lines=9, label="歌词", max_lines=500, value=LYRIC_DEFAULT, ) with gr.Accordion("基本设置", open=False, visible=False): infer_step = gr.Slider( minimum=1, maximum=200, step=1, value=60, label="推理步数", interactive=True, ) guidance_scale = gr.Slider( minimum=0.0, maximum=30.0, step=0.1, value=15.0, label="引导尺度", interactive=True, info="当 guidance_scale_lyric > 1 且 guidance_scale_text > 1 时,不应用引导尺度。", ) guidance_scale_text = gr.Slider( minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="文本引导尺度", interactive=True, info="文本条件的引导尺度。仅适用于 cfg。建议设置 guidance_scale_text=5.0, guidance_scale_lyric=1.5 作为开始。", ) guidance_scale_lyric = gr.Slider( minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="歌词引导尺度", interactive=True, ) manual_seeds = gr.Textbox( label="手动种子 (默认为无)", placeholder="1,2,3,4", value=None, info="生成种子", ) with gr.Accordion("高级设置", open=False, visible=False): scheduler_type = gr.Radio( ["euler", "heun"], value="euler", label="调度器类型", elem_id="scheduler_type", info="生成调度器类型。推荐使用 euler。heun 将花费更多时间。", ) cfg_type = gr.Radio( ["cfg", "apg", "cfg_star"], value="apg", label="CFG 类型", elem_id="cfg_type", info="生成 CFG 类型。推荐使用 apg。cfg 和 cfg_star 几乎相同。", ) use_erg_tag = gr.Checkbox( label="对标签使用 ERG", value=True, info="对标签使用熵校正引导。它将注意力乘以一个温度,以减弱标签条件并提高多样性。", ) use_erg_lyric = gr.Checkbox( label="对歌词使用 ERG", value=False, info="同上,但应用于歌词编码器的注意力。", ) use_erg_diffusion = gr.Checkbox( label="对扩散模型使用 ERG", value=True, info="同上,但应用于扩散模型的注意力。", ) omega_scale = gr.Slider( minimum=-100.0, maximum=100.0, step=0.1, value=10.0, label="粒度尺度", interactive=True, info="生成粒度尺度。值越高可以减少伪影。", ) guidance_interval = gr.Slider( minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="引导间隔", interactive=True, info="生成引导间隔。0.5 表示仅在中间步骤应用引导 (0.25 * 推理步数 到 0.75 * 推理步数)。", ) guidance_interval_decay = gr.Slider( minimum=0.0, maximum=1.0, step=0.01, value=0.0, label="引导间隔衰减", interactive=True, info="生成引导间隔衰减。引导尺度将在此间隔内从 guidance_scale 衰减到 min_guidance_scale。0.0 表示不衰减。", ) min_guidance_scale = gr.Slider( minimum=0.0, maximum=200.0, step=0.1, value=3.0, label="最小引导尺度", interactive=True, info="引导间隔衰减结束时的最小引导尺度。", ) oss_steps = gr.Textbox( label="OSS 步数", placeholder="16, 29, 52, 96, 129, 158, 172, 183, 189, 200", value=None, info="生成的最优步数。但未充分测试。", ) text2music_bnt = gr.Button("生成", variant="primary") outputs, input_params_json = create_output_ui() def json2output(json_data): return ( json_data["audio_duration"], json_data["prompt"], json_data["lyrics"], json_data["infer_step"], json_data["guidance_scale"], json_data["scheduler_type"], json_data["cfg_type"], json_data["omega_scale"], ", ".join(map(str, json_data["actual_seeds"])), json_data["guidance_interval"], json_data["guidance_interval_decay"], json_data["min_guidance_scale"], json_data["use_erg_tag"], json_data["use_erg_lyric"], json_data["use_erg_diffusion"], ", ".join(map(str, json_data["oss_steps"])), ( json_data["guidance_scale_text"] if "guidance_scale_text" in json_data else 0.0 ), ( json_data["guidance_scale_lyric"] if "guidance_scale_lyric" in json_data else 0.0 ), ( json_data["audio2audio_enable"] if "audio2audio_enable" in json_data else False ), ( json_data["ref_audio_strength"] if "ref_audio_strength" in json_data else 0.5 ), ( json_data["ref_audio_input"] if "ref_audio_input" in json_data else None ), ) def sample_data(lora_name_or_path_): json_data = sample_data_func(lora_name_or_path_) return json2output(json_data) sample_bnt.click( sample_data, inputs=[lora_name_or_path], outputs=[ audio_duration, prompt, lyrics, infer_step, guidance_scale, scheduler_type, cfg_type, omega_scale, manual_seeds, guidance_interval, guidance_interval_decay, min_guidance_scale, use_erg_tag, use_erg_lyric, use_erg_diffusion, oss_steps, guidance_scale_text, guidance_scale_lyric, audio2audio_enable, ref_audio_strength, ref_audio_input, ], ) text2music_bnt.click( fn=text2music_process_func, inputs=[ audio_duration, prompt, lyrics, infer_step, guidance_scale, scheduler_type, cfg_type, omega_scale, manual_seeds, guidance_interval, guidance_interval_decay, min_guidance_scale, use_erg_tag, use_erg_lyric, use_erg_diffusion, oss_steps, guidance_scale_text, guidance_scale_lyric, audio2audio_enable, ref_audio_strength, ref_audio_input, lora_name_or_path, ], outputs=outputs + [input_params_json], ) def create_main_demo_ui( text2music_process_func=dump_func, sample_data_func=dump_func, load_data_func=dump_func, ): with gr.Blocks( title="ACE-Step", ) as demo: with gr.Tab("文本转音乐"): create_text2music_ui( gr=gr, text2music_process_func=text2music_process_func, sample_data_func=sample_data_func, load_data_func=load_data_func, ) return demo if __name__ == "__main__": demo = create_main_demo_ui() demo.launch( server_name="0.0.0.0", server_port=7860, )